The concept of slice regular function over the real algebra $\mathbb{H}$ of quaternions is a generalization of the notion of holomorphic function of a complex variable. Let $\Omega\subset\mathbb{H}$ be a domain, i.e., a non-empty connected open subset of $\mathbb{H}=\mathbb{R}^4$. Suppose that $\Omega$ intersects $\mathbb{R}$ and is invariant under rotations of $\mathbb{H}$ around $\mathbb{R}$. A function $f:\Omega\to\mathbb{H}$ is slice regular if it is of class $C^1$ and, for all complex planes $\mathbb{C}_I$ spanned by $1$ and a quaternionic imaginary unit $I$ ($\mathbb{C}_I$ is a 'complex slice' of $\mathbb{H}$), the restriction $f_I$ of $f$ to $\Omega_I=\Omega\cap\mathbb{C}_I$ satisfies the Cauchy-Riemann equations associated with $I$, i.e., $\overline{\partial}_If_I=0$ on $\Omega_I$, where $\overline{\partial}_If_I=\frac{1}{2}(\frac{\partial}{\partial\alpha}+I\frac{\partial}{\partial\beta})$. Given any positive natural number $n$, a function $f:\Omega\to\mathbb{H}$ is called slice polyanalytic of order $n$ if it is of class $C^n$ and $\overline{\partial}_I^nf_I=0$ on $\Omega_I$ for all $I$. We define global slice polyanalytic functions of order $n$ as the functions $f:\Omega\to\mathbb{H}$, which admit a decomposition of the form $f(x)=\sum_{h=0}^{n-1}\overline{x}^hf_h(x)$ for some slice regular functions $f_0,\ldots,f_{n-1}$. Global slice polyanalytic functions of any order $n$ are slice polyanalytic of the same order $n$. The converse is not true: for each $n\geq2$, we give examples of slice polyanalytic functions of order $n$, which are not global. The aim of this paper is to study the continuity and the differential regularity of slice regular and global slice polyanalytic functions viewed as solutions of the slice-by-slice differential equations $\overline{\partial}_I^nf_I=0$ on $\Omega_I$ and as solutions of their global version $\overline{\vartheta}^nf=0$ on $\Omega\setminus\mathbb{R}$. Our quaternionic results extend to the slice monogenic case.

Slice-by-slice and global smoothness of slice regular and polyanalytic functions / Ghiloni, Riccardo. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 201:5(2022), pp. 2549-2573. [10.1007/s10231-022-01209-7]

Slice-by-slice and global smoothness of slice regular and polyanalytic functions

Riccardo Ghiloni
2022-01-01

Abstract

The concept of slice regular function over the real algebra $\mathbb{H}$ of quaternions is a generalization of the notion of holomorphic function of a complex variable. Let $\Omega\subset\mathbb{H}$ be a domain, i.e., a non-empty connected open subset of $\mathbb{H}=\mathbb{R}^4$. Suppose that $\Omega$ intersects $\mathbb{R}$ and is invariant under rotations of $\mathbb{H}$ around $\mathbb{R}$. A function $f:\Omega\to\mathbb{H}$ is slice regular if it is of class $C^1$ and, for all complex planes $\mathbb{C}_I$ spanned by $1$ and a quaternionic imaginary unit $I$ ($\mathbb{C}_I$ is a 'complex slice' of $\mathbb{H}$), the restriction $f_I$ of $f$ to $\Omega_I=\Omega\cap\mathbb{C}_I$ satisfies the Cauchy-Riemann equations associated with $I$, i.e., $\overline{\partial}_If_I=0$ on $\Omega_I$, where $\overline{\partial}_If_I=\frac{1}{2}(\frac{\partial}{\partial\alpha}+I\frac{\partial}{\partial\beta})$. Given any positive natural number $n$, a function $f:\Omega\to\mathbb{H}$ is called slice polyanalytic of order $n$ if it is of class $C^n$ and $\overline{\partial}_I^nf_I=0$ on $\Omega_I$ for all $I$. We define global slice polyanalytic functions of order $n$ as the functions $f:\Omega\to\mathbb{H}$, which admit a decomposition of the form $f(x)=\sum_{h=0}^{n-1}\overline{x}^hf_h(x)$ for some slice regular functions $f_0,\ldots,f_{n-1}$. Global slice polyanalytic functions of any order $n$ are slice polyanalytic of the same order $n$. The converse is not true: for each $n\geq2$, we give examples of slice polyanalytic functions of order $n$, which are not global. The aim of this paper is to study the continuity and the differential regularity of slice regular and global slice polyanalytic functions viewed as solutions of the slice-by-slice differential equations $\overline{\partial}_I^nf_I=0$ on $\Omega_I$ and as solutions of their global version $\overline{\vartheta}^nf=0$ on $\Omega\setminus\mathbb{R}$. Our quaternionic results extend to the slice monogenic case.
2022
5
Ghiloni, Riccardo
Slice-by-slice and global smoothness of slice regular and polyanalytic functions / Ghiloni, Riccardo. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 201:5(2022), pp. 2549-2573. [10.1007/s10231-022-01209-7]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/357461
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact