We give a closed formula for the dimension of all linear systems in Pn with assigned multiplicity at arbitrary collections of points lying on a rational normal curve of degree n. In particular we give a purely geometric explanation of the speciality of these linear systems, which is due to the pres- ence of certain subvarieties in the base locus: linear spans of points, secant varieties of the rational normal curve or joins between them.

On linear systems with multiple points on a rational normal curve / Laface, Antonio; Postinghel, Elisa; Santana Sánchez, Luis José. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - 657:(2023), pp. 197-240. [10.1016/j.laa.2022.10.023]

On linear systems with multiple points on a rational normal curve

Postinghel, Elisa;
2023-01-01

Abstract

We give a closed formula for the dimension of all linear systems in Pn with assigned multiplicity at arbitrary collections of points lying on a rational normal curve of degree n. In particular we give a purely geometric explanation of the speciality of these linear systems, which is due to the pres- ence of certain subvarieties in the base locus: linear spans of points, secant varieties of the rational normal curve or joins between them.
2023
Laface, Antonio; Postinghel, Elisa; Santana Sánchez, Luis José
On linear systems with multiple points on a rational normal curve / Laface, Antonio; Postinghel, Elisa; Santana Sánchez, Luis José. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - 657:(2023), pp. 197-240. [10.1016/j.laa.2022.10.023]
File in questo prodotto:
File Dimensione Formato  
Dimensionality_LPS_revised.pdf

embargo fino al 15/01/2025

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 433 kB
Formato Adobe PDF
433 kB Adobe PDF   Visualizza/Apri
1-s2.0-S0024379522003883-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 659.02 kB
Formato Adobe PDF
659.02 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/356442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact