A NIST SRM certified to address the issue of crystallite size measurement through a line profile analysis has been under development for several years. In order to prepare the feedstock for the SRM, nano-crystalline zinc oxide was produced from thermal decomposition of zinc oxalate. The thermal processing parameters were chosen to yield particles in two size ranges, one with a distribution centered at approximately 15 nm and another centered at 60 nm. Certification data were collected on a NIST-built diffractometer equipped with a Johansson incident beam monochromator and scintillation detector. Data were analyzed using whole powder pattern modeling to determine microstructural data. The analysis shows domains to be in the form of discs of a fairly small aspect ratio. While both materials exhibit the effects of stacking faults through broadening of specific hkl reflections, their presence in the 60 nm is more difficult to discern. Images of the crystallites obtained with transmission electron microscopy are consistent with the results from the X-ray diffraction analyses
Crystalline domain size and faulting in the new NIST SRM 1979 zinc oxide
Leoni, Matteo;Scardi, Paolo
2013-01-01
Abstract
A NIST SRM certified to address the issue of crystallite size measurement through a line profile analysis has been under development for several years. In order to prepare the feedstock for the SRM, nano-crystalline zinc oxide was produced from thermal decomposition of zinc oxalate. The thermal processing parameters were chosen to yield particles in two size ranges, one with a distribution centered at approximately 15 nm and another centered at 60 nm. Certification data were collected on a NIST-built diffractometer equipped with a Johansson incident beam monochromator and scintillation detector. Data were analyzed using whole powder pattern modeling to determine microstructural data. The analysis shows domains to be in the form of discs of a fairly small aspect ratio. While both materials exhibit the effects of stacking faults through broadening of specific hkl reflections, their presence in the 60 nm is more difficult to discern. Images of the crystallites obtained with transmission electron microscopy are consistent with the results from the X-ray diffraction analysesI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione