The recent availability of large-scale call detail record data has substantially improved our ability of quantifying human travel patterns with broad applications in epidemiology. Notwithstanding a number of successful case studies, previous works have shown that using different mobility data sources, such as mobile phone data or census surveys, to parametrize infectious disease models can generate divergent outcomes. Thus, it remains unclear to what extent epidemic modelling results may vary when using different proxies for human movements. Here, we systematically compare 658 000 simulated outbreaks generated with a spatially structured epidemic model based on two different human mobility networks: a commuting network of France extracted from mobile phone data and another extracted from a census survey. We compare epidemic patterns originating from all the 329 possible outbreak seed locations and identify the structural network properties of the seeding nodes that best predict spatial and temporal epidemic patterns to be alike. We find that similarity of simulated epidemics is significantly correlated to connectivity, traffic and population size of the seeding nodes, suggesting that the adequacy of mobile phone data for infectious disease models becomes higher when epidemics spread between highly connected and heavily populated locations, such as large urban areas.

Assessing the use of mobile phone data to describe recurrent mobility patterns in spatial epidemic models / Panigutti, C; Tizzoni, M; Bajardi, P; Smoreda, Z; Colizza, V. - In: ROYAL SOCIETY OPEN SCIENCE. - ISSN 2054-5703. - ELETTRONICO. - 4:(2017). [10.1098/rsos.160950]

Assessing the use of mobile phone data to describe recurrent mobility patterns in spatial epidemic models

Tizzoni M;
2017-01-01

Abstract

The recent availability of large-scale call detail record data has substantially improved our ability of quantifying human travel patterns with broad applications in epidemiology. Notwithstanding a number of successful case studies, previous works have shown that using different mobility data sources, such as mobile phone data or census surveys, to parametrize infectious disease models can generate divergent outcomes. Thus, it remains unclear to what extent epidemic modelling results may vary when using different proxies for human movements. Here, we systematically compare 658 000 simulated outbreaks generated with a spatially structured epidemic model based on two different human mobility networks: a commuting network of France extracted from mobile phone data and another extracted from a census survey. We compare epidemic patterns originating from all the 329 possible outbreak seed locations and identify the structural network properties of the seeding nodes that best predict spatial and temporal epidemic patterns to be alike. We find that similarity of simulated epidemics is significantly correlated to connectivity, traffic and population size of the seeding nodes, suggesting that the adequacy of mobile phone data for infectious disease models becomes higher when epidemics spread between highly connected and heavily populated locations, such as large urban areas.
2017
Panigutti, C; Tizzoni, M; Bajardi, P; Smoreda, Z; Colizza, V
Assessing the use of mobile phone data to describe recurrent mobility patterns in spatial epidemic models / Panigutti, C; Tizzoni, M; Bajardi, P; Smoreda, Z; Colizza, V. - In: ROYAL SOCIETY OPEN SCIENCE. - ISSN 2054-5703. - ELETTRONICO. - 4:(2017). [10.1098/rsos.160950]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/354782
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 42
  • OpenAlex ND
social impact