Methanol, naturally present in small quantities in the distillation of alcoholic beverages, can lead to serious health problems. When it exceeds a certain concentration, it causes blindness, organ failure, and even death if not recognized in time. Analytical techniques such as chromatography are used to detect dangerous concentrations of methanol, which are very accurate but also expensive, cumbersome, and time-consuming. Therefore, a gas sensor that is inexpensive and portable and capable of distinguishing methanol from ethanol would be very useful. Here, we present a resistive gas sensor, based on tin oxide nanowires, that works in a thermal gradient. By combining responses at various temperatures and using machine learning algorithms (PCA, SVM, LDA), the device can distinguish methanol from ethanol in a wide range of concentrations (1–100 ppm) in both dry air and under different humidity conditions (25–75% RH). The proposed sensor, which is small and inexpensive, demonstrates the ability to distinguish methanol from ethanol at different concentrations and could be developed both to detect the adulteration of alcoholic beverages and to quickly recognize methanol poisoning.

Nanosensor Based on Thermal Gradient and Machine Learning for the Detection of Methanol Adulteration in Alcoholic Beverages and Methanol Poisoning / Tonezzer, M.; Bazzanella, N.; Gasperi, F.; Biasioli, F.. - In: SENSORS. - ISSN 1424-8220. - 22:15(2022), pp. 555401-555411. [10.3390/s22155554]

Nanosensor Based on Thermal Gradient and Machine Learning for the Detection of Methanol Adulteration in Alcoholic Beverages and Methanol Poisoning

Tonezzer M.;Bazzanella N.;Gasperi F.;
2022-01-01

Abstract

Methanol, naturally present in small quantities in the distillation of alcoholic beverages, can lead to serious health problems. When it exceeds a certain concentration, it causes blindness, organ failure, and even death if not recognized in time. Analytical techniques such as chromatography are used to detect dangerous concentrations of methanol, which are very accurate but also expensive, cumbersome, and time-consuming. Therefore, a gas sensor that is inexpensive and portable and capable of distinguishing methanol from ethanol would be very useful. Here, we present a resistive gas sensor, based on tin oxide nanowires, that works in a thermal gradient. By combining responses at various temperatures and using machine learning algorithms (PCA, SVM, LDA), the device can distinguish methanol from ethanol in a wide range of concentrations (1–100 ppm) in both dry air and under different humidity conditions (25–75% RH). The proposed sensor, which is small and inexpensive, demonstrates the ability to distinguish methanol from ethanol at different concentrations and could be developed both to detect the adulteration of alcoholic beverages and to quickly recognize methanol poisoning.
2022
15
Tonezzer, M.; Bazzanella, N.; Gasperi, F.; Biasioli, F.
Nanosensor Based on Thermal Gradient and Machine Learning for the Detection of Methanol Adulteration in Alcoholic Beverages and Methanol Poisoning / Tonezzer, M.; Bazzanella, N.; Gasperi, F.; Biasioli, F.. - In: SENSORS. - ISSN 1424-8220. - 22:15(2022), pp. 555401-555411. [10.3390/s22155554]
File in questo prodotto:
File Dimensione Formato  
Tonezzer et al Sensors 2022, 22, 5554.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/354684
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact