Magnetic layered materials have emerged recently as promising systems to introduce magnetism in structures based on two-dimensional (2D) materials and to investigate exotic magnetic ground states in the 2D limit. In this work, we apply high hydrostatic pressures up to P approximate to 8.7 GPa to the bulk layered antiferromagnet FePS3 to tune the collective lattice excitations (phonons) in resonance with magnetic excitations (magnons). Close to P = 4 GPa, the magnon-phonon resonance is achieved, and the strong coupling between these collective modes leads to the formation of new quasiparticles, the magnon-polarons, evidenced in our low-temperature Raman scattering experiments by a particular avoided crossing behavior between the phonon and the doubly degenerate antiferromagnetic magnon. At the pressure-induced magnon-phonon resonance, three distinct coupled modes emerge. As it is mainly defined by intralayer properties, we show that the energy of the magnon is nearly pressure-independent. We additionally apply high magnetic fields up to B = 30 T to fully identify and characterize the magnon excitations and to explore the different magnon-polaron regimes for which the phonon has an energy lower than, equal to, or higher than the magnon energy. The description of our experimental data requires introducing a phonon-phonon coupling not taken into account in actual calculations.
High-Pressure Tuning of Magnon-Polarons in the Layered Antiferromagnet FePS3 / Pawbake, Amit; Pelini, Thomas; Delhomme, Alex; Romanin, Davide; Vaclavkova, Diana; Martinez, Gerard; Calandra, Matteo; Measson, Marie-Aude; Veis, Martin; Potemski, Marek; Orlita, Milan; Faugeras, Clement. - In: ACS NANO. - ISSN 1936-0851. - 16:8(2022), pp. 12656-12665. [10.1021/acsnano.2c04286]
High-Pressure Tuning of Magnon-Polarons in the Layered Antiferromagnet FePS3
Calandra, Matteo;
2022-01-01
Abstract
Magnetic layered materials have emerged recently as promising systems to introduce magnetism in structures based on two-dimensional (2D) materials and to investigate exotic magnetic ground states in the 2D limit. In this work, we apply high hydrostatic pressures up to P approximate to 8.7 GPa to the bulk layered antiferromagnet FePS3 to tune the collective lattice excitations (phonons) in resonance with magnetic excitations (magnons). Close to P = 4 GPa, the magnon-phonon resonance is achieved, and the strong coupling between these collective modes leads to the formation of new quasiparticles, the magnon-polarons, evidenced in our low-temperature Raman scattering experiments by a particular avoided crossing behavior between the phonon and the doubly degenerate antiferromagnetic magnon. At the pressure-induced magnon-phonon resonance, three distinct coupled modes emerge. As it is mainly defined by intralayer properties, we show that the energy of the magnon is nearly pressure-independent. We additionally apply high magnetic fields up to B = 30 T to fully identify and characterize the magnon excitations and to explore the different magnon-polaron regimes for which the phonon has an energy lower than, equal to, or higher than the magnon energy. The description of our experimental data requires introducing a phonon-phonon coupling not taken into account in actual calculations.File | Dimensione | Formato | |
---|---|---|---|
2206.11963.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
6.03 MB
Formato
Adobe PDF
|
6.03 MB | Adobe PDF | Visualizza/Apri |
acsnano.2c04286.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
8.2 MB
Formato
Adobe PDF
|
8.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione