Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001.

Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling / Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Ozel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A. - In: ELIFE. - ISSN 2050-084X. - 3:(2014), p. e01699. [10.7554/eLife.01699]

Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling

Soldano, Alessia;
2014-01-01

Abstract

Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001.
2014
Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Ozel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munc...espandi
Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling / Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Ozel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A. - In: ELIFE. - ISSN 2050-084X. - 3:(2014), p. e01699. [10.7554/eLife.01699]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/351763
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact