Relevant component analysis has shown effective in metric learning. It finds a transformation matrix of the feature space using equivalence constraints. This paper explores this idea for constructing a feature metric (FM) and develops a novel semisupervised feature-selection technique for hyperspectral image classification. Two feature measures referred to as band correlation metric (BCM) and band separability metric (BSM) are derived for the FM. The BCM can measure the spectral correlation among the bands, while the BSM can assess the class discrimination capability of a single band. The proposed feature-metric-based affinity propagation (AP) (FM-AP) technique utilizes exemplar-based clustering, i.e., AP, to group bands from original spectral channels with the FM. Experimental results are conducted on two hyperspectral images and show the advantages of the proposed technique over traditional feature-selection methods. © 2012 IEEE.

A Feature-Metric-Based Affinity Propagation Technique for Feature Selection in Hyperspectral Image Classification

Liu, Sicong;Bruzzone, Lorenzo;
2013-01-01

Abstract

Relevant component analysis has shown effective in metric learning. It finds a transformation matrix of the feature space using equivalence constraints. This paper explores this idea for constructing a feature metric (FM) and develops a novel semisupervised feature-selection technique for hyperspectral image classification. Two feature measures referred to as band correlation metric (BCM) and band separability metric (BSM) are derived for the FM. The BCM can measure the spectral correlation among the bands, while the BSM can assess the class discrimination capability of a single band. The proposed feature-metric-based affinity propagation (AP) (FM-AP) technique utilizes exemplar-based clustering, i.e., AP, to group bands from original spectral channels with the FM. Experimental results are conducted on two hyperspectral images and show the advantages of the proposed technique over traditional feature-selection methods. © 2012 IEEE.
2013
5
C., Yang; Liu, Sicong; Bruzzone, Lorenzo; R., Guan; P., Du
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/35164
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 32
  • OpenAlex ND
social impact