Ceramic additive manufacturing is gaining popularity with methods like selective laser sintering (SLS), binder jetting, direct ink writing and stereolithography, despite their disadvantages. Laser sintering and binder jetting are too expensive, while direct ink writing lacks resolution and stereolithography lacks scalability. The project aims to combine one of the most versatile, affordable, and readily available 3D printing methods: fused filament fabrication (FFF) with polymer derived ceramics to produce cellular ceramics to overcome the disadvantages posed by the other methods. The process uses a two-step approach. The first step is to 3D print the part using a polymer FFF 3D printer with a thermoplastic polyurethane filament and the second step is to impregnate the part in a polysilazane preceramic polymer and then pyrolyze it in an inert environment up to 1200C. The resulting product is a high-resolution cellular ceramic of the composition SiOC(N). This type of cellular ceramic can find an application in several fields such as scaffolds for bone tissue regeneration, liquid metal filtering, chemical and gas filtering, catalytic converters and electric applications. The process can provide an affordable alternative to the products used in these fields currently.

Ceramic Si-C-N-O cellular structures by integrating Fused Filament Fabrication 3-D printing with Polymer Derived Ceramics / Kulkarni, Apoorv Sandeep. - (2022 Jul 11), pp. 1-199. [10.15168/11572_349905]

Ceramic Si-C-N-O cellular structures by integrating Fused Filament Fabrication 3-D printing with Polymer Derived Ceramics

Kulkarni, Apoorv Sandeep
2022-07-11

Abstract

Ceramic additive manufacturing is gaining popularity with methods like selective laser sintering (SLS), binder jetting, direct ink writing and stereolithography, despite their disadvantages. Laser sintering and binder jetting are too expensive, while direct ink writing lacks resolution and stereolithography lacks scalability. The project aims to combine one of the most versatile, affordable, and readily available 3D printing methods: fused filament fabrication (FFF) with polymer derived ceramics to produce cellular ceramics to overcome the disadvantages posed by the other methods. The process uses a two-step approach. The first step is to 3D print the part using a polymer FFF 3D printer with a thermoplastic polyurethane filament and the second step is to impregnate the part in a polysilazane preceramic polymer and then pyrolyze it in an inert environment up to 1200C. The resulting product is a high-resolution cellular ceramic of the composition SiOC(N). This type of cellular ceramic can find an application in several fields such as scaffolds for bone tissue regeneration, liquid metal filtering, chemical and gas filtering, catalytic converters and electric applications. The process can provide an affordable alternative to the products used in these fields currently.
11-lug-2022
XXXIV
2020-2021
Ingegneria industriale (29/10/12-)
Materials, Mechatronics and Systems Engineering
Sorarù, Gian Domenico
Pearce, Joshua M
no
Inglese
File in questo prodotto:
File Dimensione Formato  
PhD Thesis_Apoorv Kulkarni.pdf

accesso aperto

Descrizione: PhD Thesis
Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Creative commons
Dimensione 7.52 MB
Formato Adobe PDF
7.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/349905
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact