Morphological and attribute profiles have been proven to be effective tools to fuse spectral and spatial information for classification of remote sensing data. A wide range of filters (i.e., number of levels in the profiles) is usually necessary in order to properly model the spatial information in a remote sensing scene. A dense sampling of the values of the parameters of the filters generates profiles that have both a very large dimensionality (leading to the Hughes phenomenon in classification) and a high redundancy. In this paper, a novel iterative technique based on genetic algorithms (GAs) is proposed to automatically optimize the selection of the optimal features from the profiles. The selection of the filtered images that compose the profile is performed by dividing them into three classes corresponding to high, medium, and low importance. We propose to measure the importance (modeled in terms of discriminative power in the classification task) using a random forest classifier,...
A Novel Technique for Optimal Feature Selection in Attribute Profiles Based on Genetic Algorithms
Benediktsson, Jon Atli;Bruzzone, Lorenzo
2013-01-01
Abstract
Morphological and attribute profiles have been proven to be effective tools to fuse spectral and spatial information for classification of remote sensing data. A wide range of filters (i.e., number of levels in the profiles) is usually necessary in order to properly model the spatial information in a remote sensing scene. A dense sampling of the values of the parameters of the filters generates profiles that have both a very large dimensionality (leading to the Hughes phenomenon in classification) and a high redundancy. In this paper, a novel iterative technique based on genetic algorithms (GAs) is proposed to automatically optimize the selection of the optimal features from the profiles. The selection of the filtered images that compose the profile is performed by dividing them into three classes corresponding to high, medium, and low importance. We propose to measure the importance (modeled in terms of discriminative power in the classification task) using a random forest classifier,...I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



