This manuscript investigates the use of microring resonators to create all-optical reservoir-computing networks implemented in silicon photonics. Artificial neural networks and reservoir-computing are promising applications for integrated photonics, as they could make use of the bandwidth and the intrinsic parallelism of optical signals. This work mainly illustrates two aspects: the modelling of photonic integrated circuits and the experimental results obtained with all-optical devices. The modelling of photonic integrated circuits is examined in detail, both concerning fundamental theory and from the point of view of numerical simulations. In particular, the simulations focus on the nonlinear effects present in integrated optical cavities, which increase the inherent complexity of their optical response. Toward this objective, I developed a new numerical tool, precise, which can simulate arbitrary circuits, taking into account both linear propagation and nonlinear effects. The experimental results concentrate on the use of SCISSORs and a single microring resonator as reservoirs and the complex perceptron scheme. The devices have been extensively tested with logical operations, achieving bit error rates of less than 10^−5 at 16 Gbps in the case of the complex perceptron. Additionally, an in-depth explanation of the experimental setup and the description of the manufactured designs are provided. The achievements reported in this work mark an encouraging first step in the direction of the development of novel networks that employ the full potential of all-optical devices.
Microring Based Neuromorphic Photonics / Bazzanella, Davide. - (2022 May 23), pp. 1-134. [10.15168/11572_344624]
Microring Based Neuromorphic Photonics
Bazzanella, Davide
2022-05-23
Abstract
This manuscript investigates the use of microring resonators to create all-optical reservoir-computing networks implemented in silicon photonics. Artificial neural networks and reservoir-computing are promising applications for integrated photonics, as they could make use of the bandwidth and the intrinsic parallelism of optical signals. This work mainly illustrates two aspects: the modelling of photonic integrated circuits and the experimental results obtained with all-optical devices. The modelling of photonic integrated circuits is examined in detail, both concerning fundamental theory and from the point of view of numerical simulations. In particular, the simulations focus on the nonlinear effects present in integrated optical cavities, which increase the inherent complexity of their optical response. Toward this objective, I developed a new numerical tool, precise, which can simulate arbitrary circuits, taking into account both linear propagation and nonlinear effects. The experimental results concentrate on the use of SCISSORs and a single microring resonator as reservoirs and the complex perceptron scheme. The devices have been extensively tested with logical operations, achieving bit error rates of less than 10^−5 at 16 Gbps in the case of the complex perceptron. Additionally, an in-depth explanation of the experimental setup and the description of the manufactured designs are provided. The achievements reported in this work mark an encouraging first step in the direction of the development of novel networks that employ the full potential of all-optical devices.File | Dimensione | Formato | |
---|---|---|---|
phd_unitn_Davide_Bazzanella.pdf
accesso aperto
Descrizione: Tesi di dottorato
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Creative commons
Dimensione
10.86 MB
Formato
Adobe PDF
|
10.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione