Background Drug-induced liver injury (DILI) is a major concern in drug development, as hepatotoxicity may not be apparent at early stages but can lead to life threatening consequences. The ability to predict DILI from in vitro data would be a crucial advantage. In 2018, the Critical Assessment Massive Data Analysis group proposed the CMap Drug Safety challenge focusing on DILI prediction. Methods and results The challenge data included Affymetrix GeneChip expression profiles for the two cancer cell lines MCF7 and PC3 treated with 276 drug compounds and empty vehicles. Binary DILI labeling and a recommended train/test split for the development of predictive classification approaches were also provided. We devised three deep learning architectures for DILI prediction on the challenge data and compared them to random forest and multi-layer perceptron classifiers. On a subset of the data and for some of the models we additionally tested several strategies for balancing the two DILI classes and to identify alternative informative train/test splits. All the models were trained with the MAQC data analysis protocol (DAP), i.e., 10x5 cross-validation over the training set. In all the experiments, the classification performance in both cross-validation and external validation gave Matthews correlation coefficient (MCC) values below 0.2. We observed minimal differences between the two cell lines. Notably, deep learning approaches did not give an advantage on the classification performance. Discussion We extensively tested multiple machine learning approaches for the DILI classification task obtaining poor to mediocre performance. The results suggest that the CMap expression data on the two cell lines MCF7 and PC3 are not sufficient for accurate DILI label prediction.

Predictability of drug-induced liver injury by machine learning / Chierici, Marco; Francescatto, Margherita; Bussola, Nicole; Jurman, Giuseppe; Furlanello, Cesare. - In: BIOLOGY DIRECT. - ISSN 1745-6150. - ELETTRONICO. - 15:1(2020). [10.1186/s13062-020-0259-4]

Predictability of drug-induced liver injury by machine learning

Chierici, Marco;Bussola, Nicole;Jurman, Giuseppe;Furlanello, Cesare
2020-01-01

Abstract

Background Drug-induced liver injury (DILI) is a major concern in drug development, as hepatotoxicity may not be apparent at early stages but can lead to life threatening consequences. The ability to predict DILI from in vitro data would be a crucial advantage. In 2018, the Critical Assessment Massive Data Analysis group proposed the CMap Drug Safety challenge focusing on DILI prediction. Methods and results The challenge data included Affymetrix GeneChip expression profiles for the two cancer cell lines MCF7 and PC3 treated with 276 drug compounds and empty vehicles. Binary DILI labeling and a recommended train/test split for the development of predictive classification approaches were also provided. We devised three deep learning architectures for DILI prediction on the challenge data and compared them to random forest and multi-layer perceptron classifiers. On a subset of the data and for some of the models we additionally tested several strategies for balancing the two DILI classes and to identify alternative informative train/test splits. All the models were trained with the MAQC data analysis protocol (DAP), i.e., 10x5 cross-validation over the training set. In all the experiments, the classification performance in both cross-validation and external validation gave Matthews correlation coefficient (MCC) values below 0.2. We observed minimal differences between the two cell lines. Notably, deep learning approaches did not give an advantage on the classification performance. Discussion We extensively tested multiple machine learning approaches for the DILI classification task obtaining poor to mediocre performance. The results suggest that the CMap expression data on the two cell lines MCF7 and PC3 are not sufficient for accurate DILI label prediction.
2020
1
Chierici, Marco; Francescatto, Margherita; Bussola, Nicole; Jurman, Giuseppe; Furlanello, Cesare
Predictability of drug-induced liver injury by machine learning / Chierici, Marco; Francescatto, Margherita; Bussola, Nicole; Jurman, Giuseppe; Furlanello, Cesare. - In: BIOLOGY DIRECT. - ISSN 1745-6150. - ELETTRONICO. - 15:1(2020). [10.1186/s13062-020-0259-4]
File in questo prodotto:
File Dimensione Formato  
chierici2019predictability.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/343514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 30
  • OpenAlex ND
social impact