Purpose: Modern facilities for actively scanned ion beam radiotherapy allow in principle the use of helium beams, which could present specific advantages, especially for pediatric tumors. In order to assess the potential use of these beams for radiotherapy, i.e., to create realistic treatment plans, the authors set up a dedicated 4He beam model, providing base data for their treatment planning system TRiP98, and they have reported that in this work together with its physical and biological validations. Methods: A semiempirical beam model for the physical depth dose deposition and the production of nuclear fragments was developed and introduced in TRiP98. For the biological effect calculations the last version of the local effect model was used. The model predictions were experimentally verified at the HIT facility. The primary beam attenuation and the characteristics of secondary charged particles at various depth in water were investigated using 4He ion beams of 200 MeV/u. The nuclear charge of secondary fragments was identified using a ΔE/E telescope. 3D absorbed dose distributions were measured with pin point ionization chambers and the biological dosimetry experiments were realized irradiating a Chinese hamster ovary cells stack arranged in an extended target. Results: The few experimental data available on basic physical processes are reproduced by their beam model. The experimental verification of absorbed dose distributions in extended target volumes yields an overall agreement, with a slight underestimation of the lateral spread. Cell survival along a 4 cm extended target is reproduced with remarkable accuracy. Conclusions: The authors presented a simple simulation model for therapeutical 4He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with 4He beams, either exclusively or in combination with other ion modalities.

Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality / Kramer, M.; Scifoni, E.; Schuy, C.; Rovituso, M.; Tinganelli, W.; Maier, A.; Kaderka, R.; Kraft-Weyrather, W.; Brons, S.; Tessonnier, T.; Parodi, K.; Durante, M.. - In: MEDICAL PHYSICS. - ISSN 0094-2405. - 43:4(2016), pp. 1995-2004. [10.1118/1.4944593]

Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality

Scifoni E.;
2016-01-01

Abstract

Purpose: Modern facilities for actively scanned ion beam radiotherapy allow in principle the use of helium beams, which could present specific advantages, especially for pediatric tumors. In order to assess the potential use of these beams for radiotherapy, i.e., to create realistic treatment plans, the authors set up a dedicated 4He beam model, providing base data for their treatment planning system TRiP98, and they have reported that in this work together with its physical and biological validations. Methods: A semiempirical beam model for the physical depth dose deposition and the production of nuclear fragments was developed and introduced in TRiP98. For the biological effect calculations the last version of the local effect model was used. The model predictions were experimentally verified at the HIT facility. The primary beam attenuation and the characteristics of secondary charged particles at various depth in water were investigated using 4He ion beams of 200 MeV/u. The nuclear charge of secondary fragments was identified using a ΔE/E telescope. 3D absorbed dose distributions were measured with pin point ionization chambers and the biological dosimetry experiments were realized irradiating a Chinese hamster ovary cells stack arranged in an extended target. Results: The few experimental data available on basic physical processes are reproduced by their beam model. The experimental verification of absorbed dose distributions in extended target volumes yields an overall agreement, with a slight underestimation of the lateral spread. Cell survival along a 4 cm extended target is reproduced with remarkable accuracy. Conclusions: The authors presented a simple simulation model for therapeutical 4He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with 4He beams, either exclusively or in combination with other ion modalities.
2016
4
Kramer, M.; Scifoni, E.; Schuy, C.; Rovituso, M.; Tinganelli, W.; Maier, A.; Kaderka, R.; Kraft-Weyrather, W.; Brons, S.; Tessonnier, T.; Parodi, K.; Durante, M.
Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality / Kramer, M.; Scifoni, E.; Schuy, C.; Rovituso, M.; Tinganelli, W.; Maier, A.; Kaderka, R.; Kraft-Weyrather, W.; Brons, S.; Tessonnier, T.; Parodi, K.; Durante, M.. - In: MEDICAL PHYSICS. - ISSN 0094-2405. - 43:4(2016), pp. 1995-2004. [10.1118/1.4944593]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/343443
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 80
social impact