Let $V$ be a real algebraic manifold of positive dimension. The aim of this paper is to show that, for every integer $b$ (arbitrarily large), there exists a trivial Nash family $mathcal{V}={V_y}_{y in R^b}$ of real algebraic manifolds such that $V_0=V$, $mathcal{V}$ is an algebraic family of real algebraic manifolds over $y in R^b setminus {0}$ (possibly singular over $y=0$) and $mathcal{V}$ is perfectly parametrized by $R^b$ in the sense that $V_y$ is birationally nonisomorphic to $V_z$ for every $y,z in R^b$ with $y eq z$. A similar result continues to hold in the case in which $V$ is a singular real algebraic set.

On the principle of real moduli flexibility: perfect parametrizations / Ballico, Edoardo; Ghiloni, Riccardo. - In: ANNALES POLONICI MATHEMATICI. - ISSN 0066-2216. - STAMPA. - 111:3(2014), pp. 245-258. [10.4064/ap111-3-3]

On the principle of real moduli flexibility: perfect parametrizations

Ballico, Edoardo;Ghiloni, Riccardo
2014-01-01

Abstract

Let $V$ be a real algebraic manifold of positive dimension. The aim of this paper is to show that, for every integer $b$ (arbitrarily large), there exists a trivial Nash family $mathcal{V}={V_y}_{y in R^b}$ of real algebraic manifolds such that $V_0=V$, $mathcal{V}$ is an algebraic family of real algebraic manifolds over $y in R^b setminus {0}$ (possibly singular over $y=0$) and $mathcal{V}$ is perfectly parametrized by $R^b$ in the sense that $V_y$ is birationally nonisomorphic to $V_z$ for every $y,z in R^b$ with $y eq z$. A similar result continues to hold in the case in which $V$ is a singular real algebraic set.
2014
3
Ballico, Edoardo; Ghiloni, Riccardo
On the principle of real moduli flexibility: perfect parametrizations / Ballico, Edoardo; Ghiloni, Riccardo. - In: ANNALES POLONICI MATHEMATICI. - ISSN 0066-2216. - STAMPA. - 111:3(2014), pp. 245-258. [10.4064/ap111-3-3]
File in questo prodotto:
File Dimensione Formato  
moduli-flexibility-perfect-param.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 337.02 kB
Formato Adobe PDF
337.02 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/34191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact