One of the main sources of microplastics inside surface waters is represented by combined sewer overflows (CSOs), involving severe risks for the environment. The entry of microplastics into water bodies also depends on the characteristics of sewer diversion structures used as flow control devices. In this work, an experimental investigation was carried out to evaluate the outflow of microplastic particles, consisting of different types of nylon fibers, from a side weir located on a channel with a rectangular section. A specific methodology was developed for the fiber sampling and outflow assessment after the tests were performed. For the tested configurations, an increase in fibers discharged up to 196.15% was measured as the water flow rate increased by 62.75%, combined with an increase in the side weir length up to 40% and a decrease in the crest height up to 20%. The size and weight of the different fibers showed a low impact due to their low inertia, and their motion was governed by the water flow. An empirical equation to evaluate the fiber outflow as a function of water flow rate and side weir geometric characteristics was also proposed and calibrated for the experimentally tested ranges of the dimensionless lateral water outflow Q* = 0.51–0.83 and of the dimensionless geometric parameter S* = 0.114–0.200. These first experimental results make it possible to carry out a preliminary assessment of the impact of CSOs in terms of microplastics spilled into water bodies.

Microplastics in combined sewer overflows: An experimental study / Di Nunno, F.; Granata, F.; Parrino, F.; Gargano, R.; de Marinis, G.. - In: JOURNAL OF MARINE SCIENCE AND ENGINEERING. - ISSN 2077-1312. - 9:12(2021), p. 1415. [10.3390/jmse9121415]

Microplastics in combined sewer overflows: An experimental study

Parrino F.;
2021-01-01

Abstract

One of the main sources of microplastics inside surface waters is represented by combined sewer overflows (CSOs), involving severe risks for the environment. The entry of microplastics into water bodies also depends on the characteristics of sewer diversion structures used as flow control devices. In this work, an experimental investigation was carried out to evaluate the outflow of microplastic particles, consisting of different types of nylon fibers, from a side weir located on a channel with a rectangular section. A specific methodology was developed for the fiber sampling and outflow assessment after the tests were performed. For the tested configurations, an increase in fibers discharged up to 196.15% was measured as the water flow rate increased by 62.75%, combined with an increase in the side weir length up to 40% and a decrease in the crest height up to 20%. The size and weight of the different fibers showed a low impact due to their low inertia, and their motion was governed by the water flow. An empirical equation to evaluate the fiber outflow as a function of water flow rate and side weir geometric characteristics was also proposed and calibrated for the experimentally tested ranges of the dimensionless lateral water outflow Q* = 0.51–0.83 and of the dimensionless geometric parameter S* = 0.114–0.200. These first experimental results make it possible to carry out a preliminary assessment of the impact of CSOs in terms of microplastics spilled into water bodies.
2021
12
Di Nunno, F.; Granata, F.; Parrino, F.; Gargano, R.; de Marinis, G.
Microplastics in combined sewer overflows: An experimental study / Di Nunno, F.; Granata, F.; Parrino, F.; Gargano, R.; de Marinis, G.. - In: JOURNAL OF MARINE SCIENCE AND ENGINEERING. - ISSN 2077-1312. - 9:12(2021), p. 1415. [10.3390/jmse9121415]
File in questo prodotto:
File Dimensione Formato  
jmse 2022.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/341587
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact