We characterize the existence of a unique positive weak solution for a Dirichlet boundary value problem driven by a linear second-order differential operator modeled on Hörmander vector fields, where the right hand side has sublinear growth.

Sublinear Equations Driven by Hörmander Operators / Biagi, S.; Pinamonti, A.; Vecchi, E.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 32:4(2022), pp. -12101. [10.1007/s12220-021-00854-3]

Sublinear Equations Driven by Hörmander Operators

Pinamonti A.;Vecchi E.
2022

Abstract

We characterize the existence of a unique positive weak solution for a Dirichlet boundary value problem driven by a linear second-order differential operator modeled on Hörmander vector fields, where the right hand side has sublinear growth.
4
Biagi, S.; Pinamonti, A.; Vecchi, E.
Sublinear Equations Driven by Hörmander Operators / Biagi, S.; Pinamonti, A.; Vecchi, E.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 32:4(2022), pp. -12101. [10.1007/s12220-021-00854-3]
File in questo prodotto:
File Dimensione Formato  
BPV_BO_final-2.pdf

Solo gestori archivio

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 329.11 kB
Formato Adobe PDF
329.11 kB Adobe PDF   Visualizza/Apri
Biagi2022_Article_SublinearEquationsDrivenByHörm.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 399.89 kB
Formato Adobe PDF
399.89 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/341136
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact