We characterize the existence of a unique positive weak solution for a Dirichlet boundary value problem driven by a linear second-order differential operator modeled on Hörmander vector fields, where the right hand side has sublinear growth.
Sublinear Equations Driven by Hörmander Operators / Biagi, S.; Pinamonti, A.; Vecchi, E.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 32:4(2022), pp. -12101. [10.1007/s12220-021-00854-3]
Sublinear Equations Driven by Hörmander Operators
Pinamonti A.;Vecchi E.
2022-01-01
Abstract
We characterize the existence of a unique positive weak solution for a Dirichlet boundary value problem driven by a linear second-order differential operator modeled on Hörmander vector fields, where the right hand side has sublinear growth.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BPV_BO_final-2.pdf
Solo gestori archivio
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
329.11 kB
Formato
Adobe PDF
|
329.11 kB | Adobe PDF | Visualizza/Apri |
Biagi2022_Article_SublinearEquationsDrivenByHörm.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
399.89 kB
Formato
Adobe PDF
|
399.89 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione