We describe the stratification by tensor rank of the points belonging to the tangent developable of any Segre variety. We give algorithms to compute the rank and a decomposition of a tensor belonging to the secant variety of lines of any Segre variety. We prove Comon’s conjecture on the rank of symmetric tensors for those tensors belonging to tangential varieties to Veronese varieties.

Tensor ranks on tangent developable of Segre varieties / Ballico, Edoardo; Bernardi, Alessandra. - In: LINEAR & MULTILINEAR ALGEBRA. - ISSN 0308-1087. - STAMPA. - 61:7(2013), pp. 881-894. [10.1080/03081087.2012.716430]

Tensor ranks on tangent developable of Segre varieties

Ballico, Edoardo;Bernardi, Alessandra
2013-01-01

Abstract

We describe the stratification by tensor rank of the points belonging to the tangent developable of any Segre variety. We give algorithms to compute the rank and a decomposition of a tensor belonging to the secant variety of lines of any Segre variety. We prove Comon’s conjecture on the rank of symmetric tensors for those tensors belonging to tangential varieties to Veronese varieties.
2013
7
Ballico, Edoardo; Bernardi, Alessandra
Tensor ranks on tangent developable of Segre varieties / Ballico, Edoardo; Bernardi, Alessandra. - In: LINEAR & MULTILINEAR ALGEBRA. - ISSN 0308-1087. - STAMPA. - 61:7(2013), pp. 881-894. [10.1080/03081087.2012.716430]
File in questo prodotto:
File Dimensione Formato  
03081087.2012.716430.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 184.1 kB
Formato Adobe PDF
184.1 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/34041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
  • OpenAlex ND
social impact