Functions with low differential uniformity have relevant applications in cryptography. Recently, functions with low c-differential uniformity attracted lots of attention. In particular, so-called APcN and PcN functions (generalization of APN and PN functions) have been investigated. Here, we provide a characterization of such functions via quadratic polynomials as well as non-existence results.
On construction and (non)existence of c-(almost) perfect nonlinear functions / Bartoli, D.; Calderini, M.. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - 72:(2021), pp. 10183501-10183516. [10.1016/j.ffa.2021.101835]
Titolo: | On construction and (non)existence of c-(almost) perfect nonlinear functions | |
Autori: | Bartoli, D.; Calderini, M. | |
Autori Unitn: | ||
Titolo del periodico: | FINITE FIELDS AND THEIR APPLICATIONS | |
Anno di pubblicazione: | 2021 | |
Codice identificativo Scopus: | 2-s2.0-85102022196 | |
Codice identificativo WOS: | WOS:000637706900006 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.ffa.2021.101835 | |
Handle: | http://hdl.handle.net/11572/339455 | |
Citazione: | On construction and (non)existence of c-(almost) perfect nonlinear functions / Bartoli, D.; Calderini, M.. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - 72:(2021), pp. 10183501-10183516. [10.1016/j.ffa.2021.101835] | |
Appare nelle tipologie: | 03.1 Articolo su rivista (Journal article) |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
APcN.pdf | Versione editoriale (Publisher’s layout) | ![]() | Open Access Visualizza/Apri |