We prove a Lusin type theorem for a certain class of linear partial differential operators G(D), reducing to [1, Theorem 1] when G(D) is the gradient. Moreover, we describe the structure of the set {G(D)f = F}, under assumptions of non-integrability on F, in terms of lower dimensional rectifiability and superdensity. Applications to Maxwell type system and to multivariable Cauchy-Riemann system are provided.

The identity G(D)f = F for a linear partial differential operator G(D). Lusin type and structure results in the non-integrable case / Delladio, Silvano. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 151:6(2021), pp. 1893-1919. [10.1017/prm.2020.85]

The identity G(D)f = F for a linear partial differential operator G(D). Lusin type and structure results in the non-integrable case

Delladio, Silvano
2021-01-01

Abstract

We prove a Lusin type theorem for a certain class of linear partial differential operators G(D), reducing to [1, Theorem 1] when G(D) is the gradient. Moreover, we describe the structure of the set {G(D)f = F}, under assumptions of non-integrability on F, in terms of lower dimensional rectifiability and superdensity. Applications to Maxwell type system and to multivariable Cauchy-Riemann system are provided.
2021
6
Delladio, Silvano
The identity G(D)f = F for a linear partial differential operator G(D). Lusin type and structure results in the non-integrable case / Delladio, Silvano. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 151:6(2021), pp. 1893-1919. [10.1017/prm.2020.85]
File in questo prodotto:
File Dimensione Formato  
DelladioToPRSE_new_2.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Creative commons
Dimensione 349.73 kB
Formato Adobe PDF
349.73 kB Adobe PDF Visualizza/Apri
the-identity-gdf-f-for-a-linear-partial-differential-operator-gd-lusin-type-and-structure-results-in-the-non-integrable-case (1).pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 345.83 kB
Formato Adobe PDF
345.83 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/336319
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact