In this paper, the authors introduce a hierarchic fractal model to describe bone hereditariness. Indeed, experimental data of stress relaxation or creep functions obtained by compressive/tensile tests have been proved to be fit by power law with real exponent 0<beta<1. The rheological behavior of the material has therefore been obtained, using the Boltzmann–Volterra superposition principle, in terms of real order integrals and derivatives (fractional-order calculus). It is shown that the power laws describing creep/relaxation of bone tissue may be obtained by introducing a fractal description of bone cross-section, and the Hausdorff dimension of the fractal geometry is then related to the exponent of the power law.
Power-law hereditariness of hierarchical fractal bones
Deseri, Luca;Pollaci, Pietro
2013-01-01
Abstract
In this paper, the authors introduce a hierarchic fractal model to describe bone hereditariness. Indeed, experimental data of stress relaxation or creep functions obtained by compressive/tensile tests have been proved to be fit by power law with real exponent 0I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione