The joint detection of the gravitational wave GW170817, of the short γ-ray burst GRB170817A and of the kilonova AT2017gfo, generated by the the binary neutron star (NS) merger observed on 2017 August 17, is a milestone in multimessenger astronomy and provides new constraints on the NS equation of state. We perform Bayesian inference and model selection on AT2017gfo using semi-analytical, multicomponents models that also account for non-spherical ejecta. Observational data favour anisotropic geometries to spherically symmetric profiles, with a log-Bayes' factor of ~104, and favour multicomponent models against single-component ones. The best-fitting model is an anisotropic three-component composed of dynamical ejecta plus neutrino and viscous winds. Using the dynamical ejecta parameters inferred from the best-fitting model and numerical-relativity relations connecting the ejecta properties to the binary properties, we constrain the binary mass ratio to q < 1.54 and the reduced tidal parameter to 120<1110. Finally, we combine the predictions from AT2017gfo with those from GW170817, constraining the radius of a NS of 1.4 M⊙ to 12.2 ± 0.5 km (1σ level). This prediction could be further strengthened by improving kilonova models with numerical-relativity information.
AT2017gfo: Bayesian inference and model selection of multicomponent kilonovae and constraints on the neutron star equation of state / Breschi, Matteo; Perego, Albino; Bernuzzi, Sebastiano; Del , ; Pozzo, Walter; Nedora, Vsevolod; Radice, David; Vescovi, Diego. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 505:2(2021), pp. 1661-1677. [10.1093/mnras/stab1287]
AT2017gfo: Bayesian inference and model selection of multicomponent kilonovae and constraints on the neutron star equation of state
Perego, Albino;Bernuzzi, Sebastiano;
2021-01-01
Abstract
The joint detection of the gravitational wave GW170817, of the short γ-ray burst GRB170817A and of the kilonova AT2017gfo, generated by the the binary neutron star (NS) merger observed on 2017 August 17, is a milestone in multimessenger astronomy and provides new constraints on the NS equation of state. We perform Bayesian inference and model selection on AT2017gfo using semi-analytical, multicomponents models that also account for non-spherical ejecta. Observational data favour anisotropic geometries to spherically symmetric profiles, with a log-Bayes' factor of ~104, and favour multicomponent models against single-component ones. The best-fitting model is an anisotropic three-component composed of dynamical ejecta plus neutrino and viscous winds. Using the dynamical ejecta parameters inferred from the best-fitting model and numerical-relativity relations connecting the ejecta properties to the binary properties, we constrain the binary mass ratio to q < 1.54 and the reduced tidal parameter to 120<1110. Finally, we combine the predictions from AT2017gfo with those from GW170817, constraining the radius of a NS of 1.4 M⊙ to 12.2 ± 0.5 km (1σ level). This prediction could be further strengthened by improving kilonova models with numerical-relativity information.File | Dimensione | Formato | |
---|---|---|---|
stab1287.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.62 MB
Formato
Adobe PDF
|
2.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione