Using neuromagnetic source imaging, we investigated tonotopic representation and direction sensitivity in the auditory cortex of humans (N = 15). For this purpose, source analysis was undertaken at every single sampling point during the presentation of a frequency-modulated tone (FM) sweeping slowly downward or upward across periods of 3 s duration. Stimuli were selected to target response properties of the central part of the primary auditory cortical field, which has been shown to exhibit sensitivity to distinct FM-sound features as compared to the ventral and dorsal part. Linear mixed-effects model statistics confirm tonotopic gradients in medial-lateral and anterior-posterior directions. The high resolution provided by this method revealed that the relationship between frequency and spatial location of the responding neural tissue is nonlinear. The idea that neurons specifically sensitive to the employed sound characteristics (slow, downward modulation) were activated is supported by the fact that the upward sweep of identical duration produced a different pattern of functional organisation.
Tonotopic organization of the human auditory cortex probed with frequency-modulated tones.
Weisz, Nathan;
2004-01-01
Abstract
Using neuromagnetic source imaging, we investigated tonotopic representation and direction sensitivity in the auditory cortex of humans (N = 15). For this purpose, source analysis was undertaken at every single sampling point during the presentation of a frequency-modulated tone (FM) sweeping slowly downward or upward across periods of 3 s duration. Stimuli were selected to target response properties of the central part of the primary auditory cortical field, which has been shown to exhibit sensitivity to distinct FM-sound features as compared to the ventral and dorsal part. Linear mixed-effects model statistics confirm tonotopic gradients in medial-lateral and anterior-posterior directions. The high resolution provided by this method revealed that the relationship between frequency and spatial location of the responding neural tissue is nonlinear. The idea that neurons specifically sensitive to the employed sound characteristics (slow, downward modulation) were activated is supported by the fact that the upward sweep of identical duration produced a different pattern of functional organisation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione