Aqueous solutions of naked nanotubes with Ti concentration up to 10 mM are obtained by hydrothermal synthesis followed by extensive ultrasound treatment. The morphology, surface characteristics, and solution behavior of the solubilized nano- tubes are investigated. The time course of the solubilization process driven by ultrasound follows a first-order kinetic law and is mediated by the competition between Na+ and H+ for surface sites. The dynamics of interaction with small cations (i.e. the sodium ion) is studied by nuclear magnetic resonance spectroscopy and is demonstrated to be a multifaced process, since Na+ is in part free to exchange between the binding sites on nanotubes and the bulk and in part is confined to slowly exchanging nanotube sites. The aqueous titanate nano- tube solutions are stable for months, thus opening new per- spectives for the use of this material in drug delivery and in homogeneous photocatalysis.

Stable Aqueous Solutions of Naked Titanate Nanotubes

Froner, Elena;Scarpa, Marina
2013-01-01

Abstract

Aqueous solutions of naked nanotubes with Ti concentration up to 10 mM are obtained by hydrothermal synthesis followed by extensive ultrasound treatment. The morphology, surface characteristics, and solution behavior of the solubilized nano- tubes are investigated. The time course of the solubilization process driven by ultrasound follows a first-order kinetic law and is mediated by the competition between Na+ and H+ for surface sites. The dynamics of interaction with small cations (i.e. the sodium ion) is studied by nuclear magnetic resonance spectroscopy and is demonstrated to be a multifaced process, since Na+ is in part free to exchange between the binding sites on nanotubes and the bulk and in part is confined to slowly exchanging nanotube sites. The aqueous titanate nano- tube solutions are stable for months, thus opening new per- spectives for the use of this material in drug delivery and in homogeneous photocatalysis.
2013
L., Zennaro; M., Magro; F., Vianello; A., Rigo; G., Mariotto; M., Giarola; Froner, Elena; Scarpa, Marina
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/33303
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact