We devise an efficient algorithm for the finite element approximation of harmonic fields and the numerical solution of three-dimensional magnetostatic problems. In particular, we construct a finite element basis of the first de Rham cohomology group of the computational domain. The proposed method works for general topological configurations and does not need the determination of “cutting” surfaces.

Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems

Alonso Rodriguez, Ana Maria
Primo
;
Bertolazzi, Enrico
Secondo
;
Ghiloni, Riccardo
Penultimo
;
Valli, Alberto
Ultimo
2013-01-01

Abstract

We devise an efficient algorithm for the finite element approximation of harmonic fields and the numerical solution of three-dimensional magnetostatic problems. In particular, we construct a finite element basis of the first de Rham cohomology group of the computational domain. The proposed method works for general topological configurations and does not need the determination of “cutting” surfaces.
2013
4
Alonso Rodriguez, Ana Maria; Bertolazzi, Enrico; Ghiloni, Riccardo; Valli, Alberto
File in questo prodotto:
File Dimensione Formato  
120890648.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 623.93 kB
Formato Adobe PDF
623.93 kB Adobe PDF   Visualizza/Apri
Preprint_UTM_753_(2).pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 952.19 kB
Formato Adobe PDF
952.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/33216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 29
social impact