We devise an efficient algorithm for the finite element approximation of harmonic fields and the numerical solution of three-dimensional magnetostatic problems. In particular, we construct a finite element basis of the first de Rham cohomology group of the computational domain. The proposed method works for general topological configurations and does not need the determination of “cutting” surfaces.
Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems
Alonso Rodriguez, Ana MariaPrimo
;Bertolazzi, EnricoSecondo
;Ghiloni, RiccardoPenultimo
;Valli, AlbertoUltimo
2013-01-01
Abstract
We devise an efficient algorithm for the finite element approximation of harmonic fields and the numerical solution of three-dimensional magnetostatic problems. In particular, we construct a finite element basis of the first de Rham cohomology group of the computational domain. The proposed method works for general topological configurations and does not need the determination of “cutting” surfaces.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
120890648.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
623.93 kB
Formato
Adobe PDF
|
623.93 kB | Adobe PDF | Visualizza/Apri |
Preprint_UTM_753_(2).pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
952.19 kB
Formato
Adobe PDF
|
952.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione