In this Letter we extend the proof, by Faraco and Lindberg (2020), of Taylor's conjecture in multiply connected domains to cover arbitrary vector potentials and remove the need to impose restrictions on the magnetic field to ensure gauge invariance of the helicity integral. This extension allows us to treat general magnetic fields in closed domains that are important in laboratory plasmas and brings closure to a conjecture whose resolution has been open for almost 50 years.
On the proof of Taylor's conjecture in multiply connected domains / Faraco, D.; Lindberg, S.; Mactaggart, D.; Valli, A.. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - STAMPA. - 124:(2022), pp. 1076541-1076547. [10.1016/j.aml.2021.107654]
On the proof of Taylor's conjecture in multiply connected domains
MacTaggart D.;Valli A.
2022-01-01
Abstract
In this Letter we extend the proof, by Faraco and Lindberg (2020), of Taylor's conjecture in multiply connected domains to cover arbitrary vector potentials and remove the need to impose restrictions on the magnetic field to ensure gauge invariance of the helicity integral. This extension allows us to treat general magnetic fields in closed domains that are important in laboratory plasmas and brings closure to a conjecture whose resolution has been open for almost 50 years.File | Dimensione | Formato | |
---|---|---|---|
taylor_ref_revisions.pdf
accesso aperto
Descrizione: Preprint finale
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
252.96 kB
Formato
Adobe PDF
|
252.96 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0893965921003505-main.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
802.65 kB
Formato
Adobe PDF
|
802.65 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione