In this Letter we extend the proof, by Faraco and Lindberg (2020), of Taylor's conjecture in multiply connected domains to cover arbitrary vector potentials and remove the need to impose restrictions on the magnetic field to ensure gauge invariance of the helicity integral. This extension allows us to treat general magnetic fields in closed domains that are important in laboratory plasmas and brings closure to a conjecture whose resolution has been open for almost 50 years.

On the proof of Taylor's conjecture in multiply connected domains / Faraco, D.; Lindberg, S.; Mactaggart, D.; Valli, A.. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - STAMPA. - 124:(2022), pp. 1076541-1076547. [10.1016/j.aml.2021.107654]

On the proof of Taylor's conjecture in multiply connected domains

MacTaggart D.;Valli A.
2022-01-01

Abstract

In this Letter we extend the proof, by Faraco and Lindberg (2020), of Taylor's conjecture in multiply connected domains to cover arbitrary vector potentials and remove the need to impose restrictions on the magnetic field to ensure gauge invariance of the helicity integral. This extension allows us to treat general magnetic fields in closed domains that are important in laboratory plasmas and brings closure to a conjecture whose resolution has been open for almost 50 years.
2022
Faraco, D.; Lindberg, S.; Mactaggart, D.; Valli, A.
On the proof of Taylor's conjecture in multiply connected domains / Faraco, D.; Lindberg, S.; Mactaggart, D.; Valli, A.. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - STAMPA. - 124:(2022), pp. 1076541-1076547. [10.1016/j.aml.2021.107654]
File in questo prodotto:
File Dimensione Formato  
taylor_ref_revisions.pdf

accesso aperto

Descrizione: Preprint finale
Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 252.96 kB
Formato Adobe PDF
252.96 kB Adobe PDF Visualizza/Apri
1-s2.0-S0893965921003505-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 802.65 kB
Formato Adobe PDF
802.65 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/330486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact