We study Maxwell’s equation as a theory for smooth k-forms on globally hyperbolic spacetimes with timelike boundary as defined by Aké et al. (Structure of globally hyperbolic spacetimes with timelike boundary. arXiv:1808.04412 [gr-qc]). In particular, we start by investigating on these backgrounds the D’Alembert–de Rham wave operator □ k and we highlight the boundary conditions which yield a Green’s formula for □ k. Subsequently, we characterize the space of solutions of the associated initial and boundary value problems under the assumption that advanced and retarded Green operators do exist. This hypothesis is proven to be verified by a large class of boundary conditions using the method of boundary triples and under the additional assumption that the underlying spacetime is ultrastatic. Subsequently we focus on the Maxwell operator. First we construct the boundary conditions which entail a Green’s formula for such operator and then we highlight two distinguished cases, dubbed δd -tangential and δd -normal boundary conditions. Associated to these, we introduce two different notions of gauge equivalence and we prove that in both cases, every equivalence class admits a representative abiding to the Lorenz gauge. We use this property and the analysis of the operator □ k to construct and to classify the space of gauge equivalence classes of solutions of the Maxwell’s equations with the prescribed boundary conditions. As a last step and in the spirit of future applications in the framework of algebraic quantum field theory, we construct the associated unital ∗ -algebras of observables proving in particular that, as in the case of the Maxwell operator on globally hyperbolic spacetimes with empty boundary, they possess a non-trivial center.

On Maxwell’s Equations on Globally Hyperbolic Spacetimes with Timelike Boundary / Dappiaggi, C.; Drago, N.; Longhi, R.. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 21:7(2020), pp. 2367-2409. [10.1007/s00023-020-00929-x]

On Maxwell’s Equations on Globally Hyperbolic Spacetimes with Timelike Boundary

Drago N.;
2020-01-01

Abstract

We study Maxwell’s equation as a theory for smooth k-forms on globally hyperbolic spacetimes with timelike boundary as defined by Aké et al. (Structure of globally hyperbolic spacetimes with timelike boundary. arXiv:1808.04412 [gr-qc]). In particular, we start by investigating on these backgrounds the D’Alembert–de Rham wave operator □ k and we highlight the boundary conditions which yield a Green’s formula for □ k. Subsequently, we characterize the space of solutions of the associated initial and boundary value problems under the assumption that advanced and retarded Green operators do exist. This hypothesis is proven to be verified by a large class of boundary conditions using the method of boundary triples and under the additional assumption that the underlying spacetime is ultrastatic. Subsequently we focus on the Maxwell operator. First we construct the boundary conditions which entail a Green’s formula for such operator and then we highlight two distinguished cases, dubbed δd -tangential and δd -normal boundary conditions. Associated to these, we introduce two different notions of gauge equivalence and we prove that in both cases, every equivalence class admits a representative abiding to the Lorenz gauge. We use this property and the analysis of the operator □ k to construct and to classify the space of gauge equivalence classes of solutions of the Maxwell’s equations with the prescribed boundary conditions. As a last step and in the spirit of future applications in the framework of algebraic quantum field theory, we construct the associated unital ∗ -algebras of observables proving in particular that, as in the case of the Maxwell operator on globally hyperbolic spacetimes with empty boundary, they possess a non-trivial center.
2020
7
Dappiaggi, C.; Drago, N.; Longhi, R.
On Maxwell’s Equations on Globally Hyperbolic Spacetimes with Timelike Boundary / Dappiaggi, C.; Drago, N.; Longhi, R.. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 21:7(2020), pp. 2367-2409. [10.1007/s00023-020-00929-x]
File in questo prodotto:
File Dimensione Formato  
DDL.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 504.54 kB
Formato Adobe PDF
504.54 kB Adobe PDF Visualizza/Apri
s00023-020-00929-x.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 691.41 kB
Formato Adobe PDF
691.41 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/330372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact