We consider the adiabatic limit of Hadamard states for free quantum Klein–Gordon fields, when the background metric and the field mass are slowly varied from their initial to final values. If the Klein–Gordon field stays massive, we prove that the adiabatic limit of the initial vacuum state is the (final) vacuum state, by extending to the symplectic framework the adiabatic theorem of Avron–Seiler–Yaffe. In cases when only the field mass is varied, using an abstract version of the mode decomposition method we can also consider the case when the initial or final mass vanishes, and the initial state is either a thermal state or a more general Hadamard state.

On the adiabatic limit of Hadamard states / Drago, Nicolò; Gerard, Christian. - In: LETTERS IN MATHEMATICAL PHYSICS. - ISSN 0377-9017. - 107:8(2017), pp. 1409-1438. [10.1007/s11005-017-0947-x]

On the adiabatic limit of Hadamard states

Drago, Nicolò;
2017-01-01

Abstract

We consider the adiabatic limit of Hadamard states for free quantum Klein–Gordon fields, when the background metric and the field mass are slowly varied from their initial to final values. If the Klein–Gordon field stays massive, we prove that the adiabatic limit of the initial vacuum state is the (final) vacuum state, by extending to the symplectic framework the adiabatic theorem of Avron–Seiler–Yaffe. In cases when only the field mass is varied, using an abstract version of the mode decomposition method we can also consider the case when the initial or final mass vanishes, and the initial state is either a thermal state or a more general Hadamard state.
2017
8
Drago, Nicolò; Gerard, Christian
On the adiabatic limit of Hadamard states / Drago, Nicolò; Gerard, Christian. - In: LETTERS IN MATHEMATICAL PHYSICS. - ISSN 0377-9017. - 107:8(2017), pp. 1409-1438. [10.1007/s11005-017-0947-x]
File in questo prodotto:
File Dimensione Formato  
DG.pdf

Open Access dal 02/08/2018

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 329.08 kB
Formato Adobe PDF
329.08 kB Adobe PDF Visualizza/Apri
s11005-017-0947-x.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 577.69 kB
Formato Adobe PDF
577.69 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/330353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact