In the present paper, we give a system of global differential equations which are satisfied by slice regular functions on a real alternative algebra. By means of the concepts of stem function and slice function, we are able to improve some results obtained recently in the quaternionic and slice monogenic case and to extend them to this general setting. In particular, we describe the precise relation existing between the global differential equations and the condition of slice regularity.

Global differential equations for slice regular functions / Ghiloni, Riccardo; Perotti, Alessandro. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - STAMPA. - 287:5-6(2014), pp. 561-573. [10.1002/mana.201200318]

Global differential equations for slice regular functions

Ghiloni, Riccardo;Perotti, Alessandro
2014-01-01

Abstract

In the present paper, we give a system of global differential equations which are satisfied by slice regular functions on a real alternative algebra. By means of the concepts of stem function and slice function, we are able to improve some results obtained recently in the quaternionic and slice monogenic case and to extend them to this general setting. In particular, we describe the precise relation existing between the global differential equations and the condition of slice regularity.
2014
5-6
Ghiloni, Riccardo; Perotti, Alessandro
Global differential equations for slice regular functions / Ghiloni, Riccardo; Perotti, Alessandro. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - STAMPA. - 287:5-6(2014), pp. 561-573. [10.1002/mana.201200318]
File in questo prodotto:
File Dimensione Formato  
MathNach2014.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 661.35 kB
Formato Adobe PDF
661.35 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/33021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
  • OpenAlex ND
social impact