ExtremeEarth is a three-year H2020 ICT research and innovation project. Its main objective is to develop Artificial Intelligence and big data technologies that scale to the large volumes of big Copernicus data, information and knowledge, and apply these technologies in two of the European Space Agency (ESA) Thematic Exploitation Platforms (TEP): Food Security and Polar.
Artificial Intelligence and big data technologies for Copernicus data: The EXTREMEEARTH project / Koubarakis, Manolis; Stamoulis, George; Bilidas, Dimitris; Ioannidis, Theofilos; George Mandilaras, George; Pantazi, George; Papadakis, George; Vlassov, Vladimir; Payberah, Amir H.; Wang, Tianze; Sheikholeslami, Sina; Haileselassie Hagos, Desta; Bruzzone, Lorenzo; Paris, Claudia; Weikmann, Giulio; Marinelli, Daniele; Eltoft, Torbjørn; Marinoni, Andrea; Kræmer, Thomas; Khaleghian, Salman; Ullah, Habib; Troumpoukis, Antonis; Kostopoulou, Nefeli Prokopaki; Konstantopoulos, Stasinos; Karkaletsis, Vangelis; Dowling, Jim; Kakantousis, Theofilos; Datcu, Mihai; Yao, Wei; Dumitru, Corneliu Octavian; Appel, Florian; Migdall, Silke; Muerth, Markus; Bach, Heike; Hughes, Nick; Everett, Alistair; Kiærbech, Ashild; Pedersen, Joakim Lillehaug; Arthurs, David; Fleming, Andrew; Cziferszky, Andreas. - (2021). (Intervento presentato al convegno Big Data from Space tenutosi a Virtual Meeting nel 18-20 May 2021) [10.2760/125905].
Artificial Intelligence and big data technologies for Copernicus data: The EXTREMEEARTH project
Bruzzone, Lorenzo;Paris, Claudia;Giulio Weikmann, Giulio;Marinelli, Daniele;Ullah, Habib;
2021-01-01
Abstract
ExtremeEarth is a three-year H2020 ICT research and innovation project. Its main objective is to develop Artificial Intelligence and big data technologies that scale to the large volumes of big Copernicus data, information and knowledge, and apply these technologies in two of the European Space Agency (ESA) Thematic Exploitation Platforms (TEP): Food Security and Polar.File | Dimensione | Formato | |
---|---|---|---|
proceedings of the 2021 conference on big data from-KJNA30697ENN-1-26.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
3.58 MB
Formato
Adobe PDF
|
3.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione