
   

 
 
 
 
 

EUR 30697 EN 



 

This publication is a conference proceedings published by the Joint Research Centre (JRC)), the European Commission’s science and 

knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output 
expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on 
behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and 

quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should 
contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of 
any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its 

authorities, or concerning the delimitation of its frontiers or boundaries. 
 
Contact information: Pierre.Soille at ec.europa.eu 

 
EU Science Hub 
https://ec.europa.eu/jrc 

 
 
 

 
JRC125131 
 

EUR 30697 EN 
 
 

PDF ISBN 978-92-76-37661-3 ISSN 1831-9424 doi:10.2760/125905 

 
 
 

 
 
 

 
 
 

 
 
 

Luxembourg: Publications Office of the European Union, 2021  
 
© European Union, 2021 

 
 
 

 
 
 

The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the 
reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Except otherwise noted, the reuse of this document is authorised under the 
Creative Commons Attribution 4.0 International (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse 

is allowed provided appropriate credit is given and any changes are indicated. For any use or reproduction of photos or other material that 
is not owned by the EU, permission must be sought directly from the copyright holders. 
 

All content © European Union, 2021 
 
 

 
 
 

 
 
 

 
 
 

 
How to cite this report: Proceedings of the 2021 conference on Big Data from Space, Soille, P., Loekken, S. and Albani, S., eds., EUR 30697 
EN, Publications Office of the European Union, Luxembourg, 2021, ISBN 978-92-76-37661-3, doi:10.2760/125905, JRC125131. 

 

https://doi.org/10.2760/125905
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2760/125905


Preface

While data have always been at the source of any scientific or technical endeavour, the term Big
Data has gained momentum at the beginning of this millennium given the vast amounts of digital data
generated from ever increasing sources ranging from individuals and the internet of things to sophisti-
cated sensors in laboratories, on the ground, and in space. With an initial focus on addressing technical
aspects such as handling data volume, velocity and variety, Big Data is now more about our capacity to
extract meaningful information (insights) from multi-source data, and more recently also deriving the
foresight to inform and support decisions that will shape our future.

In this context, Big Data from Space refers to the massive spatio-temporal Earth and Space obser-
vation data collected by a variety of ground-based & space-borne sensors and the synergy with data
coming from other sources and communities. The continuous growth of Big Data from Space is moti-
vated by the need for answering major societal challenges related to the impact of human activities on
our planet in the case of Earth Observation, or fundamental questions related to the origin of our Uni-
verse in the case of space observation. While the growth of data volume, velocity, and variety is matched
by technological advances related to sensors as well as information and communication technologies,
the extraction of insights from the generated data is enabled by breakthroughs in data science and in
particular thanks to recent progress in artificial intelligence. These developments are empowering new
approaches and applications in various and diverse domains influencing life on Earth and societal as-
pects, from sensing cities, monitoring human settlements and urban areas to climate change, sustainable
development goals, and security.

The main objectives of the 2021 Big Data from Space conference (BiDS’21) are:

• Bring to the scene new user needs and requirements related to the use of large amounts and
varieties of data in different space domains such as Earth Observation (e.g., EU Copernicus pro-
gramme), Space Science, Navigation and Telecommunications (e.g., EU Space programmes as
Galileo and EU GovSatCom), mission operations and system engineering;

• Bring together major European actors in the fields of Space and data technologies, including
research, industry, institutions, and users, to strengthen the communication and transfer of re-
quirements, methods and technologies, and to reinforce an interdisciplinary approach;

• Explore and expand the ever increasing relevance of Big Data in European and global environ-
mental policy initiatives and programmes, and the corresponding increasing complexity of appli-
cations and use cases;
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• Discover and foster breakthrough data science processing and analysis techniques to extract in-
sights and generate foresight, showing use cases wherever possible to facilitate future user uptake;

• Focus on new paradigms of data science addressing the entire value chain, i.e., building of refer-
ence training sets, data processing to extract information, information analysis to gather knowl-
edge, and knowledge transformation in foresight;

• Maximise the uptake and impact of solutions exploiting multi-source spatio-temporal data linked
with other data sources;

• Advance the upscale of new solutions from Research and Innovation (R&I) to operational use
(e.g., for the security domain and informed policy making);

• Foster interoperability of platforms and services by promoting open standards, analysis ready
data, and Application Programming Interfaces (APIs);

• Promote interdisciplinarity to respond to multi-sectorial challenges such as those put forward by
the European Green Deal or the wide-ranging consequences of the Covid-19 pandemic;

• Promote cross-fertilisation with similar activities in other data intensive domains (e.g., high-
energy physics, genomics, social media, internet of things, etc.).

The BiDS conference series is co-organised by the European Space Agency (ESA), the Joint Re-
search Centre (JRC) of the European Commission, and the European Union Satellite Centre (SatCen).
BiDS’21 emphasises not only on the insights that can be retrieved from Big Data from Space but also
on the exploitation of these insights for foresight to improve our capacity to detect trends and model
future evolution. This capacity is becoming increasingly important given the pace at which our World
is changing. This is exemplified and reflected by the EU Destination Earth (DestinE) initiative and the
related digital twin of the Earth. The objective of DestinE is to develop a very high precision digital
model of the Earth to monitor and simulate natural and human activity, and to develop and test scenarios
that would enable more sustainable development and support European environmental policies. The
provision of more reliable scenarios of future evolution under different boundary conditions requires us
to improve our understanding of Earth’s dynamic systems besides their monitoring. Similarly to past
editions of this conference, the 2021 edition provides a snapshot of the different research and innovation
developments in the field of Big Data from Space including technical aspects and applications.

These proceedings contain the papers presented at the on-line BiDS’21 conference held on May
18-20 as an on-line conference. From a total of 63 submissions, reviewed in average by 3 programme
committee members, 47 papers were accepted: 30 as oral presentations and the remaining 17 as poster
presentations. Further to these presentations, the conference featured 5 keynote lectures from distin-
guished speakers that enlightened the audience with their experience in areas relevant to Big Data from
Space:

1. Digital Twins of the Earth System = Really Big Data
by Peter Bauer
(European Centre for Medium-Range Weather Forecasts, UK)

2. From Interactive Computing to Collaborative Science: Opportunities in the Cloud with Open
Infrastructure
by Fernando Pérez
(Berkeley Institute for Data Science, USA)

3. Earth Observation + Machine Learning + System Modelling to Understand the Earth System
by Markus Reichstein (Max Planck Institute for Biogeochemistry, Germany)

4. Space: the Quantum Frontier
by Radu Ionicioiu
(Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Romania)

5. Big Data Astronomy: Challenges and Opportunities
by Leanne Guy
(AURA/Rubin Observatory, USA)

ii
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BiDS’21 was initially scheduled to be hosted at the Polytechnic University of Bucharest, Romania,
with the support of the Romanian Space Agency (ROSA). This venue was announced during the closing
session of BiDS’19 organised in November 2019. No one could have imagined the disruption that we
would all have to face just 3 months later with the covid-19 pandemic. Accordingly, the BiDS’21 or-
ganising committee took the decision to move the conference to an on-line event during its first meeting
in May 2020. This was not an easy decision given the enthusiasm from our colleagues from Romania
to host the conference and promote Big Data from Space in Romania, particularly among students and
young researchers. Retrospectively, this was the right decision as most of us are still limited in travelling
not to speak of gathering at a conference that attracted 700 attendees in 2019! Each conference format
has its own advantages and drawbacks. The creation of new contacts and sparkling new ideas and col-
laborations during coffee break, lunches, and dinners have for sure been very much missed. On the plus
side, all on-line presentations including the recording of the keynote lectures not included in these pro-
ceedings can be accessed through the conference website: www.bigdatafromspace2021.org.

Great thanks go to all authors and presenters of BiDS’21 as well as the numerous participants (518
registrations from more than 54 different countries one week ahead of the conference start). Together,
they have ensured the success of the 2021 conference on Big Data from Space. Special thanks go to the
Programme Committee members who have guaranteed the quality of the conference programme and
these proceedings.

Pierre Soille, Sveinung Loekken, and Sergio Albani
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ABSTRACT

The H2020 DeepCube project leverages advances in the fields
of Artificial Intelligence and Semantic Web to unlock the po-
tential of Copernicus Big Data and contribute to the Digi-
tal Twin Earth initiative. DeepCube aims to address prob-
lems of high socio-environmental impact and enhance our
understanding of Earth’s processes correlated with Climate
Change. To achieve this, the project employs novel tech-
nologies, such as the Earth System Data Cube, the Seman-
tic Cube, the Hopsworks platform for distributed deep learn-
ing, and visual analytics tools, integrating them into an open,
cloud-interoperable platform. DeepCube will develop Deep
Learning architectures that extend to non-conventional data,
apply hybrid modeling for data-driven AI models that respect
physical laws, and open up the Deep Learning black box with
Explainable Artificial Intelligence and Causality.

Index Terms— Data cubes, Artificial Intelligence, se-
mantic web, hybrid modeling, explainable AI, causality,
climate change, Digital Twin Earth

1. INTRODUCTION

The Copernicus program is believed to be a game changer for
both science and the industry. Free and open data available
at this scale, frequency, and quality constitutes a fundamen-
tal paradigm change in Earth Observation (EO). However, the
availability of the sheer volume of Copernicus data outstrips
our capacity to extract meaningful information. The EO com-
munity needs technology enablers to propel the development
of entirely new applications at scale.

Deep Learning (DL) has been one of the fastest-growing
trends in big data analysis. It is only relatively recently that
DL was introduced to the EO research community for infor-
mation extraction from big satellite data. The majority of the

applications that use DL though, seem to reiterate old EO
problems, which now can be solved faster and provide incre-
mentally higher accuracy with respect to conventional Ma-
chine Learning (ML) approaches.

Furthermore, DL leads to highly nonlinear, overparame-
terized models. They excel in prediction accuracy, but such
complexity hampers interpretability and trustworthiness. Pre-
dictive accuracy is important but often insufficient, and in-
terpreting what the models learned becomes important, espe-
cially in problems with economical, societal or environmen-
tal implications. The lack of interpretability, i.e. the degree
to which a human can understand the cause of a decision has
become a main barrier of DL in its wide-spread applications
for geosciences.

Finally, EO data becomes useful only when analyzed to-
gether with other sources (e.g., geospatial & in-situ data) and
turned into knowledge. Linked data is a data paradigm that
studies how one can make Resource Description Framework
(RDF) data available on the web and interconnect it with other
data with the aim of increasing its value. Nevertheless, there
are only a handful of applications that showcase the semantic
integration of linked EO and non-EO products.

The H2020 DeepCube project (Jan. 2021 - Dec. 2023,
https://deepcube-h2020.eu/) leverages advancements in the
fields of AI and semantic web to unlock the potential of big
Copernicus data. It aims to address problems that imply
high environmental and societal impact, enhance our under-
standing of Earth’s processes, correlated with the climate
emergency, and feasibly generate high business value, in line
with the Destination Earth and the Digital Twin Earth ob-
jectives. To achieve this, DeepCube integrates mature and
new technologies into an open interoperable platform that
can be deployed in cloud environments, DIAS included. The
platform is then used to develop novel DL pipelines to ex-
tract value from big Copernicus data. DeepCube develops
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DL architectures that extend to non-conventional data and
problems, introduces a novel hybrid modeling paradigm for
data-driven AI models that respect physical laws [1], and
opens-up the DL black box through Explainable AI (XAI)
and Causality. We showcase these in six applications.

2. TECHNOLOGIES

DeepCube makes use of mature technology enablers that have
been developed in other European Commission and European
Space Agency funded research. In DeepCube these enablers
are integrated to an interoperable environment allowing EO
and AI specialists to create value chains from a wide offer of
raw EO and non-EO big data. This environment is the Deep-
Cube platform (Fig. 1), which will scale to big Copernicus
datasets, designed to share resources and to define dataflows
in a coherent integrated solution. DeepCube platform will be
deployed into more than one cloud environments, including
Copernicus DIAS. Its individual components are briefly de-
scribed next.

Fig. 1. High level architecture of the DeepCube platform.

The Earth System Data Cube (ESDC) developed by
Earth System Data Lab project, seeks to be a service to the
scientific community to facilitate access and exploitation of
multivariate data sets in Earth Sciences to actually under-
stand the interactions between the Earth’s subsystems.The
core part of the ESDC is the data in analysis-ready form, to-
gether with tools and methods to generate, access, and exploit
the ESDC. A data cube essentially consists of screened, or
Analysis Ready Data (ARD), with the dimensions ”latitude”,
”longitude”, ”time”, ”variable”. Further dimensions can be

added as a result of an analysis. Currently ESDC supports
a common spatio-temporal grid [2], DeepCube will advance
to create Data Cubes where information layers are stored
in heterogeneous spatio-temporal resolution. ESDC is com-
mitted to open source computations, and open data usage.
Dynamic resource allocation and rapid scalability of ESDC
are its cornerstones for data analysis on the cloud.

The Semantic EO Data Cube [3] enables the seman-
tic enrichment of ESDC. The Semantic Data Cube allows
users to query metadata, EO data, other Linked Open Data
(LOD), and information/knowledge extracted from the data
using a semantic query language, thus creating new value
chains. In a semantic data cube [3], at least one categori-
cal interpretation exists for each observation in an image (i.e.,
each pixel). EO data co-exists with its interpretation and can
also be queried using the same high-level query language that
is used for querying interpretations. For example, a user can
query the reflectance values of certain bands in an image (e.g.,
for calculating an index) and in the same query also refer to
an interpretation of these values. Semantic data cubes are also
enriched by other kinds of data (e.g., other kinds of geospatial
data such as OSM). In this way, the querying possibilities for
a user become even larger. DeepCube will develop the first se-
mantic data cube technology internationally by extending the
geospatial ontology-based data access system Ontop-spatial
[4].

Hopsworks is an open-source Data-Intensive AI plat-
form for developing and operating end-to-end ML pipelines
at scale. Hopsworks provides first-class support for popu-
lar open-source frameworks for distributed data processing,
data engineering and data science. In addition, Hopsworks
supports DL on large volumes of data, such as those pro-
duced by the Copernicus program, using distributed train-
ing. Distributed training uses many GPUs and data-parallel
model training to reduce the time required to train models by
adding more GPUs. Hopsworks leverages Apache Spark to
make distributed training easier for programmers. However,
modern approaches to distributed training require developers
to rewrite their code when moving from using a single GPU
to hyperparameter tuning (using lots of GPUs) to distributed
training. DeepCube will develop a comprehensive new frame-
work that unifies single-host training, hyperparameter tuning,
and distributed training. We will also expand Hopsworks
to support model-parallel training, as well as API support
for distributed semi-supervised learning and self-supervised
learning. As such, DeepCube will build a state-of-the-art and
the most feature complete framework for distributed DL.

DeepCube will extend Sextant [5], a web based and mo-
bile ready platform for visualizing, exploring and interacting
with linked geospatial data. Sextant is a user-friendly applica-
tion that allows both domain experts and non-experts to take
advantage of semantic web technologies, creating thematic
maps by combining spatio-temporal information with other
data sources, e.g. industrial intelligence, socio-economic
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data, etc., allowing visual analytics based on big Copernicus
data. In addition, DeepCube will develop user interfaces of-
fering multiple ways of visualisation and filtering of social
media data, detected locations and visual concepts, allowing
analytics on top of them.

3. APPLICATIONS

3.1. Forecasting localised drought impacts in Africa

Climate change will lead to an accumulation and intensifica-
tion of various climate extremes [6]. Drought and heat waves,
as experienced repeatedly in the last decade, are expected
to become more frequent in the future, as the corresponding
persistent weather situations become more and more proba-
ble. The effects on various sectors are substantial, as could
be seen, for example, from the effects on agriculture, inland
waterways, and consequently nutrition and energy supply.

There are two significant gaps that will be addressed by
DeepCube: the first one relates to lack of methods for assess-
ing, in fine resolution, drought impact at the local level. This
requires downscaling from meteorological scales to sub-km
level using satellite data. The second gap is a lack of under-
standing of memory effects considering ecosystem dynamics,
after a drought event. A better understanding will be achieved
with so-called hybrid dynamic models [1], which model the
system partly with physical equations, partly with ML.

3.2. Climate induced migration in Africa

In the current context of climate change, extreme heat waves,
droughts and floods are not only impacting the biosphere
and atmosphere but the anthroposphere too. Human pop-
ulations are forcibly displaced, which are now referred to
as climate-induced migrants. On the agenda of the United
Nations Framework Convention on Climate Change, for in-
stance, there is an item dedicated to migration, displacement
and human mobility. The problem has obvious environmen-
tal, societal and economic implications, in both adaptation
and mitigation to climate change, as well as for assistance to
their home states. Modeling, anticipating, characterizing and
understanding the severity of migration flows and the direct
and latent factors are of paramount relevance.

There is a growing number of media reports assuming the
link of climate change, conflicts, and forced migration. How-
ever, there is little empirical evidence supporting that climate
change and migration are interrelated [7]. At present, there
is no theoretical approach to adequately represent the causal
mechanisms through which climate change induces human
displacement and migration flows. This will be the first time
that advanced causal inference schemes are developed to in-
vestigate the climate-induced migration in Africa.

Therefore, DeepCube will identify the main environmen-
tal and socio-economic drivers of human mobility and de-
velop models able to reproduce and forecast migration flows,

apply causal discovery methods to gain a deeper understand-
ing of the characteristics of the climate-induced migration
flows and establish the causal relationships of environmen-
tal and socio-economic drivers with human mobility in sub-
Saharan Africa.

3.3. Fire hazard forecasting in the Mediterranean

Climate change is playing an increasing role in determining
wildfire regimes, with future climate variability expected to
enhance the risk and severity of wildfires in many biomes in-
cluding Southern Europe [6]. Fire hazard forecasting systems
linked with the operational authorities (Civil Protection, Fire
Brigade/Service etc.), would increase their preparedness and
enhance the emergency response capacity in a changing cli-
mate.

DeepCube will identify the climatic, vegetation status
and anthropogenic drivers that impact the most fire prone-
ness based on multivariate historical data analysis on the
Mediterranean. Based on these insights, the application will
use AI bound by an ecosystem modeling [1] to model short
and mid-term fire hazard and make more accurate and with
less uncertainty future predictions using EO data time-series
analysis. XAI techniques (permutation analysis, visualization
of features-heatmap activations, and clustering activations)
will be used to open-up the DL box and gain trust on what
the model has learnt. Finally fire hazard forecasts will be
combined with LOD to assess fire risk for assets (population,
environment, economic activity) on the ground.

3.4. Global volcanic unrest detection & alerting

Interferometric Synthetic Aperture Radar (InSAR) can sys-
tematically provide ground deformation estimations over
volcanic areas, see 6-day repeat pass cycle of Sentinel-1AB.
Fringes detected in Sentinel-1 wrapped interferograms over
volcanic areas indicate the onset of deformation, which is
usually due to magma chamber fill-in at depth. Such activity
is considered as precursor for a potential eruption.

Having the work by Anantrasirichai et al. [8], as a start-
ing point, DeepCube will research DL architectures that can
automatically detect the presence of ground deformation trig-
gered by volcanic unrest, within wrapped interferograms, to-
wards establishing a volcanic deformation alert service, cov-
ering several volcanoes globally.

3.5. Automated infrastructure monitoring with InSAR

SAR-derived information is used to produce millimetric-
precision ground surface deformation maps. Thanks to
Sentinel-1 SAR revisit time, new deformation maps can be
delivered to end-users on a regular basis [9], showing average
deformation rates (mm/yr) of Persistent Scatter (PS) “points”
and their displacement time series. Each information layer
is made of hundreds of thousands of measurement points,
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and can be used for detecting significant instabilities on crit-
ical infrastructures thus contributing to plan and optimize
mitigation actions.

However, no automated processes are in place to robustly
detect hotspots, i.e. zones for which displacement time se-
ries show a significant change in trend motion. In addition,
for zones experiencing these changes, no indication is given
to end-users about possible reasons and driving mechanisms.
DeepCube will attempt to link any deformation hotspots to
a possible reason for trend change, using DL on InSAR data
and sparse in-situ geodetic measurements for training and fu-
sion.

3.6. Copernicus services for sustainable tourism

Tourism is one of the pillars of the modern economy. It con-
stitutes more than 10% of global GDP with a CAGR of 3+%.
The number of international tourists is forecasted to rise to
1.8 Billion in 2030, making it crucial to find efficient ways to
handle this growth, preserve the fragile destinations and adapt
to the increasing demand over limited hospitality infrastruc-
tures. Additionally, more than 65% of European travellers
have declared that they are striving to make their travels more
sustainable but do not find the right information or the possi-
bility to assess their environmental footprint.

DeepCube will create a new commercial service, by pro-
ducing a pricing engine for tourism packages, which incor-
porates the environmental dimension. The goal is to calcu-
late a suite of price coefficients for a travel agency to apply
to its packages, considering environmental impact automati-
cally, utilizing Copernicus and data (water quality degrada-
tion, marine pollution, air pollution), product characteristics
(ecological potential), and supply and demand information
coming from social media streams. The application will be
set-up as a reinforcement learning problem and a prototype
will be developed for the northeast coast of Brazil nearby the
Lencois national park.

4. CONCLUSIONS

We see DeepCube as a showcase of the Digital Twin Earth po-
tential, by 1) delivering the DeepCube platform as a technol-
ogy enabler for the deployment of end-to-end AI pipelines on
big EO data regardless of the underlying cloud infrastructure,
and 2) designing and testing new AI architectures to address
significant scientific questions related to Climate Change and
generating business value via the joint analysis of EO with
industrial data.

The DeepCube platform consists of mature, high technol-
ogy readiness level, components. This interoperable platform
will be a DeepCube legacy which could be deployed in dif-
ferent cloud environments. The platform will provide novel
solutions for all phases on an EO-based AI pipeline, from data
ingestion, to big data organisation (data cubes), feature engi-

neering, semantic annotation, distributed DL, semantic rea-
soning and visualisation.

In addition, DeepCube will test a hybrid modeling ap-
proach for geophysical parameters estimation, enhanced
through XAI for “physics-aware” AI applications. DeepCube
will also perform causality analysis to understand and inter-
pret patterns, cause and effects on diverse datasets, including
satellite, social media and socio-economic data. Finally, it
will employ for the first time AI on complex Sentinel-1 SAR
data, an archive of the order of PBs, currently the richest asset
that remains underexploited. We expect that the first concrete
results will be shared by the end of 2021.

DeepCube will deliver to the community Data Cubes with
ARD and training datasets allowing to capture hidden trends
for key environmental variables. These cubes will be made
available for reuse by June 2021.
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ABSTRACT

Continuous monitoring of Greenhouse Gases (GHGs) is of
vital importance as it is key to measure our progress towards
the achievement of the sustainability of our environment. The
same applies to global atmospheric simulation of GHGs vari-
ations and fluxes that enables us to understand and build the
future climatic scenarios. Both tasks are complex requiring
high computational costs, human validation work and a large
number of geographically distributed measurement instru-
ments. ICOS, the European Integrated Carbon Observation
System is a distributed international research infrastructure
dedicated to measure, analyze and understand those fluxes.
On the other hand, the space agencies ESA and NASA have
developed in the last decade satellites capable of measuring
air quality, through the observation of GHGs, with increased
accuracy. Satellites are capable of measuring the concentra-
tion of GHGs in the troposphere. This paper presents our
findings in computing the correlation between ground-based
data using the ICOS infrastructure data with OCO2 and S5P
satellite data to validate the use of satellite to improve our
global observation capacity and the global simulation models
of GHGs. The paper shows the potential of using space based
observations to characterize sources and sinks of GHGs on a
local scale.

Index Terms— Copernicus, in-situ sensors, Sentinel-5P,
OCO2, ICOS, CO, CO2, air quality, green house gases

1. INTRODUCTION

Over the past three decades, several international treaties,
policies and collaboration frameworks have been put in place
to monitor, regulate and reduce the global Greenhouse Gases
(GHGs) emissions. UNFCCC (United Nations Framework
Convention on Climate Change), the Kyoto protocol [3] and
the Paris agreements [4] are few examples of this international
consensus regarding the importance of reducing the GHGs on
a global scale. The efficient monitoring and modeling proce-
dures needs efficient, reliable and dense observations. This
is a global effort where each country, region, or coalition,
work to put in place an observation network with a variety of
sensors. To converge on a common understanding between

all stakeholders, these networks have to be inter-operable
and the sensors compatible. Another possibility is to put
in place global monitoring sensors, like earth observation
satellites. The challenge is to validate the use of these global
observations with local instruments to be able to identify the
sources and sinks of GHGs at the finest scale, with the highest
reliability and at the highest revisit, temporal frequency.

The Copernicus program is the most ambitious environ-
ment monitoring program to date. With its variety of satellite
sensors and in-situ components, the program provides un-
precedented monitoring at a global scale. Regarding GHGs,
the Sentinel-5P (S5P) satellite carries the state-of-the-art
Tropomi instrument to map a multitude of gases including
CO. In addition to S5P, the Orbiting Carbon Observatory,
OCO-2, is NASA’s first dedicated Earth remote sensing satel-
lite to study atmospheric carbon dioxide (CO2) from space.
Despite their differences in geographical resolution and re-
visit frequency, the combination of data coming from these
two satellites, S5P and OCO-2, provides a powerful global
monitoring tool of GHGs.

While satellite data are key to understand the global dy-
namics; the local fluxes, the sectorial contributions and the na-
tional inventories require finer geographical resolutions. The
Integrated Carbon Observation System (ICOS) is a research
infrastructure aiming to quantify the GHGs balance of Eu-
rope and adjacent regions. Through the deployed ground sta-
tions, ICOS, brings in reliable, scientific data to help decision
making bodies reach the consensus related to GHGs and effi-
ciently allocate the required efforts to reduce them.

The use of satellite data for global understanding and lo-
cal in-situ sensors for local observations is proven to be very
relevant to support decision making, nonetheless, the combi-
nation of both technique to increase our monitoring and mod-
elling capacities is a high priority research area. Scientific
effort have been put lately in linked subjects, for instance,
for the validation of NO2 S5P data with ground data from
NDACC ZSL-DOAS, MAX-DOAS and Pandonia global net-
works [6] [5]. The results show clear correlations between
the NO2 satellite and in-situ data. Another example is the use
of S5P data to monitor GHGs in cities have been studied and
proven reliable in [7]. Finally the cross validation of satellite
data and portable in-situ spectrometer have been explored and
demonstrated in [8]. All these recent elements give us confi-
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dence in the relevance of this study and the need to explore
the possibility to use satellite measurements for local inven-
tory processes.

The challenge we are addressing in this paper is to as-
sess the capacity for satellite measurement techniques, in the
troposphere, to correlate to local, in-situ, sources and sinks.
We are presenting our work to study the correlation between
satellite measurements from S5P, OCO-2 and ICOS ground
stations, opening the way towards potential use of satellite
measurements as a source of virtual densification of the in-
situ measurements networks.

Following this introduction, the paper is divided in 4 chap-
ters, starting with the presentation of the data sources and the
datasets we have used, the Data analysis and the associated
processing pipeline, the results and finally the conclusions
and future work.

2. DATA SOURCES

2.1. ICOS

ICOS is a research infrastructure that has been born out of
European scientific communities’ idea of having a consistent,
sustained measurement network operating under exactly the
same technical and scientific standards to enable high-quality
climate change research and increase usability of the research
data.

The ICOS Atmosphere network includes stations in 13
European countries. Each station measures greenhouse gas
concentrations (such as carbon dioxide and methane) in the
atmosphere and is standardised by using the same equipment,
technology and a rigorous quality control process [9]. The
data collected at the atmosphere stations are automatically
processed and quality controlled by the Atmoshpere Thematic
Centre, checked by the station Principle Investigator and fi-
nally published via the ICOS Carbon Portal.

In this article we have made use of data published on the
ICOS Carbon portal from 25 ICOS approved Class 2 stations
through its API [14], using the CO and CO2 concentration
values at the highest sampling level for each of them. The
image Fig. 1 shows the location in Europe of the 25 stations
used.

Fig. 1. Location in Europe of the 25 Class 2 ICOS stations

2.2. Sentinel-5P

Sentinel-5 Precursor (S5P) is an Earth observation satellite
developed by ESA as part of the Copernicus Programme
and launched on 13 October 2017 to monitor air pollution.
Through its Tropomi spectrometer (TROPOspeheric Mon-
itoring Instrument) the satellite monitors ozone, methane,
formaldehyde, aerosol, NO2, SO2 and the gas of interest for
this article, CO. To observe this molecule at a global level,
TROPOMI exploites clear-sky and cloudy-sky Earth radiance
measurements in the 2.3 µm spectral range of the shortwave
infrared (SWIR) part of the solar spectrum. TROPOMI clear
sky observations provide CO total columns with sensitivity to
the tropospheric boundary layer. For cloudy atmospheres, the
column sensitivity changes according to the light path [10].

The original S5P Level 2 (L2) data is binned by time, not
by latitude/longitude. To facilitate the analysis, the Earth En-
gine Data Catalog, developed by Google (GEE), has been
used in this paper as a source of data, converting each L2
product into an L3 but maintaining a single grid per orbit [12].

2.3. OCO2

The Orbiting Carbon Observatory, OCO2, is the NASA’s first
dedicated Earth remote sensing satellite to study atmospheric
carbon dioxide from Space. OCO2 is collecting space-based
global measurements of atmospheric CO2 with the precision,
resolution, and coverage needed to characterize sources and
sinks on regional scales. OCO2 is also able to quantify CO2
variability over the seasonal cycles year after year.

The JPL presents in the Algorithm Theoretical Basis
(ATB) [11] the algorithm to compute the column-averaged
CO2 dry air molecule fraction XCO2, the variable chosen
in this paper to be correlated with the in-situ data from the
ICOS infrastructure. In addition, from the CO2 Virtual Sci-
ence Data Environment [13], a NASA web service, JPL
allows to query level 2 or 3 products, the second ones derived
from downsampling the original data at the desired spatial
and temporal resolution.

3. DATA ANALYSIS ENVIRONMENT

To perform the temporal correlation at each of the ICOS sta-
tions, it is necessary to extract the corresponding data from
each satellite and from the ICOS infrastructure itself. As GEE
and ICOS provide a python API, we have setup a python envi-
ronment for the post-processing of these data and the calcula-
tion of the correlation between them. Fetching OCO2 dataset
has been performed using independent scripts and the data
uploaded to the Google platform, making the corresponding
transformations to make the data type compatible.

Regarding data extraction, the calculation has been per-
formed for each of the class 2 stations of the ICOS infrastruc-
ture. Therefore we filtered the level 3 products of OCO2 and
S5P for the position given by each station by taking the start
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and end dates of the query as the limit dates of operation of
the station, which generally range from the validation of the
class 2 label of each tower to the present.

Using a python script and the previously mentioned ICOS
and GEE APIs, time series have been extracted for each sta-
tion for both, CO and CO2. To be able to use the GEE API
and use the CO2 image collection from OCO2, a transfor-
mation of the level 3 product obtained from the NASA web
platform in Netcdf4 format (generated by the NASA server as
a derivative of the product “OCO2 Level 2 Full Physics Re-
trieval” [13]) has been carried out to obtain a series of TIF
images that have been subsequently geo-referenced (geoTIF)
and finally uploaded to the google server.

To setup the correlation, the temporal resolution of each
data source is different, ICOS stations can provide hourly
measurements, S5P a daily observation and OCO2 a monthly
observation. After extracting the time series with the maxi-
mum possible sampling from each of the 3 data sources, these
series have been resampled by an arithmetic mean. CO data
have been resampled to a daily average to correlate ICOS and
S5P data, while CO2 data have been resampled to a monthly
mean to correlate ICOS and CO2 data. Thus, we have 4 time
series for each ICOS station location, 2 for each gas (CO and
CO2), both from satellites and ICOS.

A pairwise correlation between each time series per-
formed for each station. We found erroneous and inconclu-
sive data for locations where there are very few months of
overlap between satellite and in-situ acquisitions. Moreover,
the values at each location have been concatenated to com-
pute an averaged correlation, filtering the series to only those
with more than 1 year of coexistent satellite-in-situ data.

All the code necessary for reproducibility has been up-
loaded to Murmuration’s Github [1].

4. RESULTS

The results in tables 1 and 2 show the correlation values
between the satellite and in-situ time series, the number of
months of coexistence of both sensors and the % of invalid
values. The invalid satellite data are mainly due to the or-
bital nature of the satellite itself and the reduced frequency
of visits for high latitudes (northern Europe) or to periods of
inoperability of the in-situ station.

For the CO, the correlation values for the 25 stations range
from low (0.55) to high (0.90) excluding outliers. Table 1
collects the top-3 and bottom-3 correlation values, as well as
the average correlation of the 25 time series.

Fig. 2 and Fig. 3 show the daily evolution of CO for the
station with the highest and lowest correlation value, respec-
tively.

Table 2 shows the results for CO2. Considering the high
number of invalid values in most of the stations, the number
of valid rows is greatly reduced. In the table, the top-3 and the
bottom-3 of the stations for which there is a minimum of 12

Table 1. Correlation of CO taking S5P and ICOS measure-
ments. The column Months represents the amount of time
where both sensors coexist. The % of NaN values from each
of the data sources indicates the % of empty values within
the coexistence interval of both, satellite and ICOS station.

Correlation Months %NaN
SAT

%NaN
ICOS

PUY 0.8936 19 0 0
CMN 0.8662 19 0 0
RUN 0.8612 19 0 0
KRE 0.2926 19 0 15.8
LIN 0.2594 19 0 0
SAC 0.2371 19 0 0
Mean 0.6834 - - -
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Fig. 2. Evolution of CO values measured at Puy-de-Dôme
Observatory (PUY) in-situ and via S5P

months of satellite-ICOS coexistence are listed. The absence
of OCO2 data is high due to the low temporal resolution and
the orbital nature of the satellite. Figure 4 shows the evolution
of CO2 in the station with the highest level of correlation.

5. CONCLUSIONS

Based on the two correlation tables and the study of the data
through the associated graphs, it is concluded that the cor-
relation is sufficiently high for both CO and CO2. It is im-
portant to note that although both the satellite and the in-situ
sensor infer the same quantities, the satellite estimates the to-
tal amount of the molecule in the entire atmospheric column
while the in-situ station accurately obtains the value of the
molecule at a single point. Even so, the correlation between
the two measurements is high, as has been shown throughout
this article.

On the other hand, although the data have been well
processed, both the ICOS infrastructure and the Copernicus
project are young and the data history is not large. We have
seen irrelevant correlations for time series of a few months
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Fig. 3. Evolution of CO values measured at Saclay (SAC)
in-situ and via S5P

Table 2. Correlation of CO2 taking OCO2 and ICOS
measurements. Months and NaN are defined as for 1

Correlation Months %NaN
SAT

%NaN
ICOS

CMN 0.9043 22 40.9 0
IPR 0.8386 27 37.0 0
LIN 0.8191 49 65.3 0
KIT 0.6757 40 35.0 0
KRE 0.6458 37 54.1 8.1
JFJ 0.4164 39 53.8 0

Mean 0.6456 - - -

of data and we have also been forced to resample to monthly
values to be consistent with the OCO2 satellite data.

This first study shows that such correlations and cross
time series can be used to validate global CO and CO2 mod-
els, expecting at each earth point correlation values of the
same order as those found at each station. Future work will
also include other GHGs for comparison, such as CH4, which
is calculated at each of the Class 1 and 2 ICOS stations, as
well as by the Sentinel 5P satellite.
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ABSTRACT

ExtremeEarth is a three-year H2020 ICT research and
innovation project. Its main objective is to develop Artificial
Intelligence and big data technologies that scale to the large
volumes of big Copernicus data, information and knowledge,
and apply these technologies in two of the European Space
Agency (ESA) Thematic Exploitation Platforms (TEP): Food
Security and Polar.

Index Terms— ExtremeEarth, Earth Observation, Linked
Geospatial Data, Artificial Intelligence, Deep Learning,
Copernicus, Food Security, Polar Regions

1. INTRODUCTION

Copernicus data is a paradigmatic case of big data giving rise to
all relevant challenges, the so-called 5-Vs: volume, velocity,
variety, veracity, and value, as it is documented in recent reports,
such as the 2019 Copernicus Sentinel Data Access Report and
the Copernicus Market Report of the same year. Copernicus data
today is freely available not only through the Copernicus Open
Access Hub but also through the five Data and Information
Access Services (DIAS), where computing power is also
available close to the data. Some related facilities of the Earth
Observation (EO) ecosystem in Europe are the Thematic
Exploitation Platforms (TEPs) of the European Space Agency
(ESA), which enable user communities to collaborate using a
virtual workspace where EO data, non-EO data, tools, and
computing power are available. Today most of the TEPs run on a
DIAS (e.g., the Food Security and Polar TEPs run on
CREODIAS).

This work is supported by the ExtremeEarth project funded by European
Union’s Horizon 2020 Research and Innovation Programme under Grant
Agreement No. 825258.

ExtremeEarth1 is positioned in this prosperous European EO
ecosystem and has three objectives: (i) extracting information
and knowledge from big Copernicus data using scalable
algorithms, (ii) managing this information and knowledge
efficiently, and (iii) integrating it with other data sources to
develop demo applications of economic, environmental and
societal value.

ExtremeEarth is currently in its final year. Its main
achievements so far are the following: (i) two implemented use
cases focusing on Food Security and the Polar Regions, (ii) new
deep learning architectures for crop type mapping in the context
of the Food Security use case, (iii) new deep learning
architectures for sea ice mapping in the context of the Polar use
case, (iv) the development and open publication of very large
datasets for training the deep architectures, (v) scalable semantic
technologies for managing, as big linked geospatial data, the
information and knowledge extracted from Copernicus data, and
(vi) the ExtremeEarth platform that brings all the above
technologies together and is used to implement the two use
cases.

The rest of the paper presents the above contributions.

2. THE FOOD SECURITY USE CASE

Food Security is a very challenging issue of this century,
especially given the changing Earth environment. Irrigation is an
important dimension of it requiring reliable water resources
either from ground water or from surface water. A large portion
of fresh water is linked to snowfall, snow/ice storage and
seasonal release. Therefore, water availability maps are an
important EO-based product that can support farmers in decision
making and irrigation information management.

1http://earthanalytics.eu/
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The goal of the Food Security use case of ExtremeEarth is to
develop high resolution water availability maps for agricultural
areas, allowing a new level of detail for wide-scale irrigation
support for farmers [11]. The Danube river basin is the area
where the results of the use case have been demonstrated so far.
This area was selected for the following reasons: (i) variability
in water supply due to changing precipitation patterns leading to
extremes events (floods and droughts), (ii) significant portion of
irrigated agriculture, (iii) significant water supply from water
storage by snow in the Alps, (iv) large interest of demo users,
and (v) strong economic, environmental and societal value.

The first stage of this use case was the collection of user
requirements during a workshop which was organized by VISTA
in Munich in March 2019. The user requirements drove the
design and implementation of the Food Security use case which
is shown graphically in Figure 1.

Fig. 1: The Food Security use case

The implementation of the use case draws on the following
information: (i) crop type and leaf area index computed using
Sentinel-2 images, (ii) biomass, water demand, soil moisture,
snow storage, snow run off and groundwater computed using
the proprietary land surface modelling software PROMET of
VISTA, (iii) snowmelt from Sentinel-1 data, (iv) snow cover
products from the Copernicus CryoLand service, and (v) snow
water equivalent from in-situ sensors.

The outputs of the use case are field specific irrigation
recommendations for specific demo applications in Austria,
Hungary and Romania. These consist of recommendations
regarding when and how much to irrigate, and yield forecasts
with and without optimized irrigation plans.

The implementation of the processing chain of the Food
Security use case has been done in the Food Security TEP using
the ExtremeEarth platform (see Section 7 and [3]). The deep
learning algorithms used for crop type mapping are discussed in
Section 4. The semantic technologies that are used are discussed
in Section 6.

3. THE POLAR USE CASE

The anticipated economic development of the Arctic, partially
driven by reductions in sea ice cover, will see an increase in
maritime shipping activity. High quality, timely and reliable
information about sea ice and iceberg conditions is vital to ensure
that vessels can navigate efficiently and safely with minimal
risk to the environment. This information is required by vessels
in many sectors, including cargo transport, fisheries, tourism,
research vessels, resource exploration and extraction, destination
shipping and national coast guard vessels.

The goal of the ExtremeEarth Polar use case is to produce
high resolution ice charts from massive volumes of
heterogeneous Copernicus data. The first stage of the use case
was the collection of user requirements during the user
workshop of March 2019. Two key technical requirements that
resulted from this workshop were: (i) SAR data (Sentinel-1 and
other third party missions) were considered the most reliable
source of information for the use case, since they are already
used widely for operational sea ice charting, and (ii) automatic
products to be produced by ExtremeEarth had to maintain the
high resolution of this data and the ice charts derived from it
(300 meters or better). The technical requirements drove the
design and implementation of the Polar use case which is shown
graphically in Figure 2.

Fig. 2: The Polar use case

The implementation of the use case draws on the following
information: (i) Level-1 Sentinel-1 images, (ii) training data
compiled manually by expert ice analysts from a variety of
sources including other satellite data such as Sentinel-2 and -3
visible and infrared optical, COSMO SkyMed and RADARSAT-2
SAR, and ICESat-2 sea ice freeboard, and in addition shipboard
observations from Ice Watch2.

The outputs of the use case are sea ice concentration and
type maps, displaying stages of development (in accordance with
the World Meteorological Organization Sea Ice Nomenclature),
including fraction of leads and ridges, over the Polar Regions, at
a resolution of 300 meters or better.

The implementation of the processing chain of the Polar use
case has been done in the Polar TEP [2] using the ExtremeEarth
platform (see Section 7 and [3]). The deep learning algorithms
used for sea ice classification are discussed in Section 5. The
semantic technologies that are used are discussed in Section 6.

2https://icewatch.met.no
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4. DEEP LEARNING FOR CROP TYPE MAPPING

The determination of crops using satellite images is an important
component of the pipeline of the Food Security use case
discussed in Section 2. For this task, University of Trento
developed a deep neural network architecture for crop type
mapping using Sentinel-2 image time series [13]. This
classification task presents many challenges: (i) the considered
time series are noisy, due to the presence of clouds that corrupts
the multi-temporal spectral signature, thus affecting the
classification results, (ii) time series of different tiles are made
up of images acquired in different dates (different temporal
sampling), and (iii) a large training dataset of labeled samples is
needed to train the deep model.

To address these challenges, the methodology of [13] consists
of three main steps: (i) a preprocessing step that generates
temporally homogeneous time series of images across tiles that
accurately represent the phenological behavior of the crops,
(ii) an extraction step that automatically establishes a large
training dataset leveraging publicly available crop type maps
based on farmer declarations in a large area of Austria, and (iii)
a multi-temporal deep learning classification algorithm based
on a Long Short Term Memory neural network. The proposed
approach achieves more balanced classification results compared
to existing state-of-the-art methods obtaining a mean F1 score of
78.32% and an overall accuracy of 85.86%. The approach of [13]
has recently been implemented in Hopsworks (see Section 7)
and has been deployed in the Food Security TEP.

An important contribution of ExtremeEarth in this context is
the development of the training dataset mentioned above which
consists of around 1 million pixels of 16 Sentinel-2 images
located in Austria, where each pixel is labelled with one of 13
crop types. The dataset will soon be available in the web site of
the project.

5. DEEP LEARNING FOR SEA ICE CHARTING

The core of the Polar use case of ExtremeEarth is sea ice
classification. For this task, UiT, KTH and DLR have developed
multiple deep neural network architectures (LDA, CNNs,
variational auto-encoders, GANs, etc.) described in more detail
in [5, 6, 7]. Some of these architectures have been implemented
in Hopsworks (see Section 7) and have been deployed in the
Polar TEP.

An important contribution of ExtremeEarth in this context is
the development of three training datasets for sea ice
classification: (i) A training dataset consisting of 63,048 patches
of 30 Sentinel-1 images located in the European Arctic where
each patch is labelled with one of 6 ice types. This dataset was
developed by expert photo-interpretation and it was used to train
three of the CNNs. (ii) A training dataset consisting of around
62 million patches of 24 Sentinel-1 images located in the
Belgica Bank of the Greenland Sea, where each patch is labelled
with one of 11 ice types. This dataset was developed using active

learning and it was used to train the LDA model and one of the
CNNs. (iii) A training dataset consisting of 18,000 patches of 12
Sentinel-1 images located in the Danmarkshavn (East coast of
Greenland), where each patch is labelled with one of 2 classes
(ice or water). This dataset was developed by expert
photo-interpretation and it was used to train one of the CNNs.

The first and the third of the above datasets are publicly
available on the web site of the project3 and the same will be
true for the second one very soon.

To advance the international state of the art in this area,
ExtremeEarth also organized a workshop on “Machine learning
for operational sea ice charting” during ESA’s Φ-week 2020.

6. BIG DATA TECHNOLOGIES

The previous sections presented the two use cases of
ExtremeEarth and the deep learning algorithms deployed in
these use cases. The other technical dimension of the project,
which is important in the development of the two use cases, is
the utilization of linked data technologies that scale to large
volumes of heterogeneous geospatial data available in
geographically dispersed data sources. To tackle this important
challenge, University of Athens and Demokritos have developed
the following big data systems:

• GeoTriples-Spark, a scalable implementation of
GeoTriples [8] on top of Apache Spark for transforming
geospatial data from their legacy formats (e.g., shapefiles)
into RDF.

• JedAI-spatial, a scalable system for interlinking RDF
data sources by discovering topological relations among
geographic features present in these sources [12].

• Strabo 2, a scalable geospatial RDF store developed using
Apache Spark and Apache Sedona.

• A scalable extension of the system SemaGrow [1] for
federating geospatial data sources.

To evaluate Strabo 2 and SemaGrow, the same partners have
developed and published two benchmarks: Geographica 2 [4]
and GeoFedBench [14].

All of the above systems are deployed in the two use cases.
In both use cases, information and knowledge extracted from
satellite images (e.g., crop type maps) together with data from
auxiliary data sources are encoded in RDF using the ontology of
the relevant use case. Then, the use case is implemented using
the above big data systems. For example, in the Food Security
use case, we use an ontology to model data sources such as
water availability, crop conditions and irrigation information (see
Section 2). The ontology also integrates these data sources with
the results of the deep learning algorithms and the PROMET
model, so that we can provide irrigation recommendations for
specific crop fields in an area of interest.

Another example of the use of the above linked geospatial
data technologies in ExtremeEarth is [10], where we show how

3http://earthanalytics.eu/datasets.html
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to use geospatial interlinking algorithms, such as the ones
implemented in JedAI-spatial, to produce automatic workflows
for combining in-situ observational data with satellite images.
For the Polar use case, this has been done using observations
from the Ice Watch system of MET Norway, which collects data
from ships performing visual sea ice observations while
navigating the Arctic. This in-situ observational data record the
time, point locations, and other important properties of sea ice.
Interlinking these observations with satellite images has enabled
MET Norway to validate and improve the interpretation of
satellite images, improve routine ice charts, and assist in
building deep learning algorithm training datasets.

7. THE EXTREMEEARTH PLATFORM

The ExtremeEarth platform brings together the deep learning
architectures and the big data technologies presented above and
applies them to the development of the two use cases.

The platform is based on Hopsworks, a data intensive AI
platform from Logical Clocks. Hopsworks4 is an open-source
framework for the development and operation of machine
learning models, available as a managed platform on AWS and
Azure and self-managed (open-source or Enterprise version). It
has certain unique features that makes it appropriate for the
development of deep learning algorithms for EO data: it
provides tools to build end-to-end machine learning pipelines, a
feature store, management of machine learning artifacts and
assets such as experiments and models, first-class support for
popular open-source machine learning frameworks such as
TensorFlow, PyTorch, Keras and Scikit-Learn, integration with
data science tools such as Jupyter notebooks, and infrastructure
monitoring functionalities. Hopsworks provides a horizontally
scalable platform for deep learning with GPUs and SDKs for
hyper-parameter tuning and elastic model serving.

ExtremeEarth has demonstrated that Hopsworks is an
excellent platform for developing the two use cases using the big
linked geospatial data systems presented above, as it offers a
convenient collaborative environment for building data pipelines.
For example, a user can import a specific dataset in a project,
transform it into RDF and securely share the results with
specific other users or projects, who then can perform further
processing, such as interlinking or querying. Hopsworks
supports dynamic roles for users accessing and processing such
datasets, which enables data owners to securely give access to
datasets in a project, knowing the data cannot be exported
outside the project or cross-linked with other data sources
outside the project. This security model is built on TLS
certificates and enables Hops5 to operate as the only
multi-tenant Hadoop platform. In order to perform these tasks,
users and developers only need to interact through the
human-usable interface of the platform, that offers ready-to-use

4https://www.logicalclocks.com/
5https://hopsworks.readthedocs.io/en/stable/

overview/introduction/what-hops.html

deployments of popular cloud data storage and processing tools
like Apache Hive, Apache Spark and Apache Kafka. Also, using
this interface the users can collaborate in order to specify and
execute their data pipeline in a Jupyter Notebook and effortlessly
monitor the execution progress and inspect the results.

Finally, we have shown that by implementing the big data
systems of Section 6 using Hopsworks, we can outperform
competitor systems and scale to TBs of geospatial data [9].

8. SUMMARY

We gave an overview of ExtremeEarth and its main
contributions up to today. As the project reaches its conclusion,
the ExtremeEarth team is working on the following problems:
validation of the deep learning models, detailed experimental
evaluation of the implemented big linked geospatial data
systems using Geographica 2 and GeoFedBench, and integrating
all available technologies to build demos of the two use cases in
the Food Security and Polar TEPs.
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