We consider Riesz-type nonlocal interaction energies over polygons. We prove the analog of the Riesz inequality in this discrete setting for triangles and quadrilaterals, and obtain that among all N-gons with fixed area, the nonlocal energy is maximized by a regular polygon, for N= 3, 4. Further we derive necessary first-order stationarity conditions for a polygon with respect to a restricted class of variations, which will then be used to characterize regular N-gons, for N= 3, 4, as solutions to an overdetermined free boundary problem.

Riesz-type Inequalities and Overdetermined Problems for Triangles and Quadrilaterals / Bonacini, M.; Cristoferi, R.; Topaloglu, I.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 32:2(2022), pp. 4801-4831. [10.1007/s12220-021-00737-7]

Riesz-type Inequalities and Overdetermined Problems for Triangles and Quadrilaterals

Bonacini M.;Cristoferi R.;
2022-01-01

Abstract

We consider Riesz-type nonlocal interaction energies over polygons. We prove the analog of the Riesz inequality in this discrete setting for triangles and quadrilaterals, and obtain that among all N-gons with fixed area, the nonlocal energy is maximized by a regular polygon, for N= 3, 4. Further we derive necessary first-order stationarity conditions for a polygon with respect to a restricted class of variations, which will then be used to characterize regular N-gons, for N= 3, 4, as solutions to an overdetermined free boundary problem.
2022
2
Bonacini, M.; Cristoferi, R.; Topaloglu, I.
Riesz-type Inequalities and Overdetermined Problems for Triangles and Quadrilaterals / Bonacini, M.; Cristoferi, R.; Topaloglu, I.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 32:2(2022), pp. 4801-4831. [10.1007/s12220-021-00737-7]
File in questo prodotto:
File Dimensione Formato  
Bonacini - Cristoferi - Topaloglu, Riesz-type inequalities and overdetermined problems for triangles and quadrilaterals.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 708.2 kB
Formato Adobe PDF
708.2 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/330195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact