We describe an algorithm for obtaining generators of the unit group of the integral group ring ZG of a finite abelian group G. We used our implementation in Magma of this algorithm to compute the unit groups of ZG for G of order up to 110. In particular for those cases we obtained the index of the group of Hoechsmann units in the full unit group. At the end of the paper we describe an algorithm for the more general problem of finding generators of an arithmetic group corresponding to a diagonalisable algebraic group. © 2012 Elsevier Inc. All rights reserved.

Computing generators of the unit group of an integral abelian group ring / Faccin, Paolo; De Graaf, Willem Adriaan; W., Plesken. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 373:(2013), pp. 441-452. [10.1016/j.jalgebra.2012.09.031]

Computing generators of the unit group of an integral abelian group ring

Faccin, Paolo;De Graaf, Willem Adriaan;
2013-01-01

Abstract

We describe an algorithm for obtaining generators of the unit group of the integral group ring ZG of a finite abelian group G. We used our implementation in Magma of this algorithm to compute the unit groups of ZG for G of order up to 110. In particular for those cases we obtained the index of the group of Hoechsmann units in the full unit group. At the end of the paper we describe an algorithm for the more general problem of finding generators of an arithmetic group corresponding to a diagonalisable algebraic group. © 2012 Elsevier Inc. All rights reserved.
2013
Faccin, Paolo; De Graaf, Willem Adriaan; W., Plesken
Computing generators of the unit group of an integral abelian group ring / Faccin, Paolo; De Graaf, Willem Adriaan; W., Plesken. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 373:(2013), pp. 441-452. [10.1016/j.jalgebra.2012.09.031]
File in questo prodotto:
File Dimensione Formato  
units.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 208 kB
Formato Adobe PDF
208 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/32999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact