We prove some formulas relating Cauchy-Riemann operators defined on hypercomplex subspaces of an alternative *-algebra to a differential operator associated with the concept of slice-regularity and to the spherical Dirac operator. These results in particular allow to introduce a definition of locally slice-regular function and open the path for local slice analysis. Since Cauchy-Riemann operators factor the corresponding Laplacian operators, the proven formulas let us also obtain several results about the harmonicity and polyharmonicity properties of slice-regular functions.
Cauchy-Riemann operators and local slice analysis over real alternative algebras / Perotti, Alessandro. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 2022:516(2022), pp. 12648001-12648034. [10.1016/j.jmaa.2022.126480]
Cauchy-Riemann operators and local slice analysis over real alternative algebras
Perotti, Alessandro
2022-01-01
Abstract
We prove some formulas relating Cauchy-Riemann operators defined on hypercomplex subspaces of an alternative *-algebra to a differential operator associated with the concept of slice-regularity and to the spherical Dirac operator. These results in particular allow to introduce a definition of locally slice-regular function and open the path for local slice analysis. Since Cauchy-Riemann operators factor the corresponding Laplacian operators, the proven formulas let us also obtain several results about the harmonicity and polyharmonicity properties of slice-regular functions.File | Dimensione | Formato | |
---|---|---|---|
CR_S_operators_arxiv1.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
384.47 kB
Formato
Adobe PDF
|
384.47 kB | Adobe PDF | Visualizza/Apri |
CR_S_operators_JMAA_final.pdf.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
686.25 kB
Formato
Adobe PDF
|
686.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione