Energy consumption is one of the most constrained requirements for the development and implementation of wireless sensor networks. Many design aspects affect energy consumption, ranging from the hardware components, operations of the sensors, the communication protocols, the application algorithms, duty cycles and others. Efficient simulation tool can be used to estimate the contribution to energy consumption of all of these factors, and significantly decrease the efforts and time spent to choose the right solution that fits best to a particular application. In this work we present design space exploration methodology for ultra low power embedded systems and wireless sensor networks. The methodology takes inspiration from Platform Based Design (PBD) paradigm and defines separate abstraction layers for all system aspects that directly contribute power consumption of target applications. To support presented methodology we built a SystemC-based discrete event simulation framework, called “PASES”, that provides power-aware simulation and analysis of wireless sensor networks and sensor nodes. Its modular architecture allows flexible, extensible and rapid modeling of custom HW platforms, SW application models, communication protocols, energy sources, environment dynamics and nodes mobility. Based on the feedback gained from PASES, the optimal and energy-efficient solution for the specific project of interest can be selected. The proposed approach improves state-of-the-art by providing fast and reliable power-aware system-level exploration for a wide range of custom applications

Power-Aware Design Methodology for Wireless Sensor Networks / Minakov, Ivan. - (2012 Apr 02).

Power-Aware Design Methodology for Wireless Sensor Networks

MINAKOV, IVAN
2012-04-02

Abstract

Energy consumption is one of the most constrained requirements for the development and implementation of wireless sensor networks. Many design aspects affect energy consumption, ranging from the hardware components, operations of the sensors, the communication protocols, the application algorithms, duty cycles and others. Efficient simulation tool can be used to estimate the contribution to energy consumption of all of these factors, and significantly decrease the efforts and time spent to choose the right solution that fits best to a particular application. In this work we present design space exploration methodology for ultra low power embedded systems and wireless sensor networks. The methodology takes inspiration from Platform Based Design (PBD) paradigm and defines separate abstraction layers for all system aspects that directly contribute power consumption of target applications. To support presented methodology we built a SystemC-based discrete event simulation framework, called “PASES”, that provides power-aware simulation and analysis of wireless sensor networks and sensor nodes. Its modular architecture allows flexible, extensible and rapid modeling of custom HW platforms, SW application models, communication protocols, energy sources, environment dynamics and nodes mobility. Based on the feedback gained from PASES, the optimal and energy-efficient solution for the specific project of interest can be selected. The proposed approach improves state-of-the-art by providing fast and reliable power-aware system-level exploration for a wide range of custom applications
2-apr-2012
XXIII
2011-2012
Ingegneria e Scienza dell'Informaz (cess.4/11/12)
Information and Communication Technology
Passerone, Roberto
no
ITALIA
Inglese
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/328000
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact