Piezoelectric ceramics, such as BaTiO3, have gained considerable attention in bone tissue engineering applications thanks to their biocompatibility, ability to sustain a charged surface as well as improve bone cells' adhesion and proliferation. However, the poor processability and brittleness of these materials hinder the fabrication of three-dimensional scaffolds for load bearing tissue engineering applications. For the first time, this study focused on the fabrication and characterisation of BaTiO3 composite scaffolds by using a multi-material 3D printing technology. Polycaprolactone (PCL) was selected and used as dispersion phase for its low melting point, easy processability and wide adoption in bone tissue engineering. The proposed single-step extrusion-based strategy enabled a faster and solvent-free process, where raw materials in powder forms were mechanically mixed and subsequently fed into the 3D printing system for further processing. PCL, PCL/hydroxyapatite and PCL/BaTiO3 composite scaffolds were successfully produced with high level of consistency and an inner architecture made of seamlessly integrated layers. The inclusion of BaTiO3 ceramic particles (10% wt.) significantly improved the mechanical performance of the scaffolds (54 ± 0.5 MPa) compared to PCL/hydroxyapatite scaffolds (40.4 ± 0.1 MPa); moreover, the presence of BaTiO3 increased the dielectric permittivity over the entire frequency spectrum and tested temperatures. Human osteoblasts Saos-2 were seeded on scaffolds and cellular adhesion, proliferation, differentiation and deposition of bone-like extracellular matrix were evaluated. All tested scaffolds (PCL, PCL/hydroxyapatite and PCL/BaTiO3) supported cell growth and viability, preserving the characteristic cellular osteoblastic phenotype morphology, with PCL/BaTiO3 composite scaffolds exhibiting higher mineralisation (ALP activity) and deposited bone-like extracellular matrix (osteocalcin and collagen I). The single-step multi-material additive manufacturing technology used for the fabrication of electroactive PCL/BaTiO3 composite scaffolds holds great promise for sustainability (reduced material waste and manufacturing costs) and it importantly suggests PCL/BaTiO3 scaffolds as promising candidates for load bearing bone tissue engineering applications to solve unmet clinical needs.

Additively manufactured BaTiO3 composite scaffolds: A novel strategy for load bearing bone tissue engineering applications / Mancuso, E.; Shah, L.; Jindal, S.; Serenelli, C.; Tsikriteas, Z. M.; Khanbareh, H.; Tirella, A.. - In: MATERIALS SCIENCE AND ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS. - ISSN 0928-4931. - 126:(2021), p. 112192. [10.1016/j.msec.2021.112192]

Additively manufactured BaTiO3 composite scaffolds: A novel strategy for load bearing bone tissue engineering applications

Tirella A.
2021-01-01

Abstract

Piezoelectric ceramics, such as BaTiO3, have gained considerable attention in bone tissue engineering applications thanks to their biocompatibility, ability to sustain a charged surface as well as improve bone cells' adhesion and proliferation. However, the poor processability and brittleness of these materials hinder the fabrication of three-dimensional scaffolds for load bearing tissue engineering applications. For the first time, this study focused on the fabrication and characterisation of BaTiO3 composite scaffolds by using a multi-material 3D printing technology. Polycaprolactone (PCL) was selected and used as dispersion phase for its low melting point, easy processability and wide adoption in bone tissue engineering. The proposed single-step extrusion-based strategy enabled a faster and solvent-free process, where raw materials in powder forms were mechanically mixed and subsequently fed into the 3D printing system for further processing. PCL, PCL/hydroxyapatite and PCL/BaTiO3 composite scaffolds were successfully produced with high level of consistency and an inner architecture made of seamlessly integrated layers. The inclusion of BaTiO3 ceramic particles (10% wt.) significantly improved the mechanical performance of the scaffolds (54 ± 0.5 MPa) compared to PCL/hydroxyapatite scaffolds (40.4 ± 0.1 MPa); moreover, the presence of BaTiO3 increased the dielectric permittivity over the entire frequency spectrum and tested temperatures. Human osteoblasts Saos-2 were seeded on scaffolds and cellular adhesion, proliferation, differentiation and deposition of bone-like extracellular matrix were evaluated. All tested scaffolds (PCL, PCL/hydroxyapatite and PCL/BaTiO3) supported cell growth and viability, preserving the characteristic cellular osteoblastic phenotype morphology, with PCL/BaTiO3 composite scaffolds exhibiting higher mineralisation (ALP activity) and deposited bone-like extracellular matrix (osteocalcin and collagen I). The single-step multi-material additive manufacturing technology used for the fabrication of electroactive PCL/BaTiO3 composite scaffolds holds great promise for sustainability (reduced material waste and manufacturing costs) and it importantly suggests PCL/BaTiO3 scaffolds as promising candidates for load bearing bone tissue engineering applications to solve unmet clinical needs.
2021
Mancuso, E.; Shah, L.; Jindal, S.; Serenelli, C.; Tsikriteas, Z. M.; Khanbareh, H.; Tirella, A.
Additively manufactured BaTiO3 composite scaffolds: A novel strategy for load bearing bone tissue engineering applications / Mancuso, E.; Shah, L.; Jindal, S.; Serenelli, C.; Tsikriteas, Z. M.; Khanbareh, H.; Tirella, A.. - In: MATERIALS SCIENCE AND ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS. - ISSN 0928-4931. - 126:(2021), p. 112192. [10.1016/j.msec.2021.112192]
File in questo prodotto:
File Dimensione Formato  
2021 Mancuso Material Science and Engineering C.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 9.18 MB
Formato Adobe PDF
9.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/326990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 38
social impact