Most domain adaptation methods consider the problem of transferring knowledge to the target domain from a single-source dataset. However, in practical applications, we typically have access to multiple sources. In this paper we propose the first approach for multi-source domain adaptation (MSDA) based on generative adversarial networks. Our method is inspired by the observation that the appearance of a given image depends on three factors: the domain, the style (characterized in terms of low-level features variations) and the content. For this reason, we propose to project the source image features onto a space where only the dependence from the content is kept, and then re-project this invariant representation onto the pixel space using the target domain and style. In this way, new labeled images can be generated which are used to train a final target classifier. We test our approach using common MSDA benchmarks, showing that it outperforms state-of-the-art methods.
TriGAN: image-to-image translation for multi-source domain adaptation / Roy, S.; Siarohin, A.; Sangineto, E.; Sebe, N.; Ricci, E.. - In: MACHINE VISION AND APPLICATIONS. - ISSN 0932-8092. - 32:1(2021), pp. 4101-4112. [10.1007/s00138-020-01164-4]
TriGAN: image-to-image translation for multi-source domain adaptation
Roy S.;Siarohin A.;Sangineto E.;Sebe N.;Ricci E.
2021-01-01
Abstract
Most domain adaptation methods consider the problem of transferring knowledge to the target domain from a single-source dataset. However, in practical applications, we typically have access to multiple sources. In this paper we propose the first approach for multi-source domain adaptation (MSDA) based on generative adversarial networks. Our method is inspired by the observation that the appearance of a given image depends on three factors: the domain, the style (characterized in terms of low-level features variations) and the content. For this reason, we propose to project the source image features onto a space where only the dependence from the content is kept, and then re-project this invariant representation onto the pixel space using the target domain and style. In this way, new labeled images can be generated which are used to train a final target classifier. We test our approach using common MSDA benchmarks, showing that it outperforms state-of-the-art methods.File | Dimensione | Formato | |
---|---|---|---|
MVAP21.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione