In an optimal visiting problem, we want to control a trajectory that has to pass as close as possible to a collection of target points or regions. We introduce a hybrid control-based approach for the classic problem where the trajectory can switch between a group of discrete states related to the targets of the problem. The model is subsequently adapted to a mean-field game framework to study viability and crowd fluxes to model a multitude of indistinguishable players.

Hybrid control for optimal visiting problems for a single player and for a crowd / Bagagiolo, Fabio; Festa, Adraino; Marzufero, Luciano. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 29:1(2022), pp. 401-436. [10.1007/s00030-021-00737-0]

Hybrid control for optimal visiting problems for a single player and for a crowd

Bagagiolo, Fabio;Marzufero, Luciano
2022-01-01

Abstract

In an optimal visiting problem, we want to control a trajectory that has to pass as close as possible to a collection of target points or regions. We introduce a hybrid control-based approach for the classic problem where the trajectory can switch between a group of discrete states related to the targets of the problem. The model is subsequently adapted to a mean-field game framework to study viability and crowd fluxes to model a multitude of indistinguishable players.
2022
1
Bagagiolo, Fabio; Festa, Adraino; Marzufero, Luciano
Hybrid control for optimal visiting problems for a single player and for a crowd / Bagagiolo, Fabio; Festa, Adraino; Marzufero, Luciano. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 29:1(2022), pp. 401-436. [10.1007/s00030-021-00737-0]
File in questo prodotto:
File Dimensione Formato  
nodea_bagagiolo_festa_marzufero.pdf

Solo gestori archivio

Descrizione: first online
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF   Visualizza/Apri
s00030-021-00737-0.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/323352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact