We prove the existence of a viscosity solution of the following path dependent nonlinear Kolmogorov equation: where [Formula presented]=C([0,T];Rd), (u(⋅,ϕ))t≔(u(t+θ,ϕ))θ∈[−δ,0] and [Formula presented]. The result is obtained by a stochastic approach. More precisely, we prove a new type of nonlinear Feynman–Kac representation formula associated to a backward stochastic differential equation with time-delayed generator, which is of non-Markovian type. Applications to the large investor problem and risk measures via g–expectations are also provided.

A Stochastic Approach to Path-Dependent Nonlinear Kolmogorov Equations via BSDEs with Time-Delayed Generators and Applications to Finance / Cordoni, F.; Di Persio, L.; Maticiuc, L.; Zalinescu, A.. - In: STOCHASTIC PROCESSES AND THEIR APPLICATIONS. - ISSN 0304-4149. - 2020, 130:3(2020), pp. 1669-1712. [10.1016/j.spa.2019.05.013]

A Stochastic Approach to Path-Dependent Nonlinear Kolmogorov Equations via BSDEs with Time-Delayed Generators and Applications to Finance

Cordoni F.;Di Persio L.;Zalinescu A.
2020-01-01

Abstract

We prove the existence of a viscosity solution of the following path dependent nonlinear Kolmogorov equation: where [Formula presented]=C([0,T];Rd), (u(⋅,ϕ))t≔(u(t+θ,ϕ))θ∈[−δ,0] and [Formula presented]. The result is obtained by a stochastic approach. More precisely, we prove a new type of nonlinear Feynman–Kac representation formula associated to a backward stochastic differential equation with time-delayed generator, which is of non-Markovian type. Applications to the large investor problem and risk measures via g–expectations are also provided.
2020
3
Cordoni, F.; Di Persio, L.; Maticiuc, L.; Zalinescu, A.
A Stochastic Approach to Path-Dependent Nonlinear Kolmogorov Equations via BSDEs with Time-Delayed Generators and Applications to Finance / Cordoni, F.; Di Persio, L.; Maticiuc, L.; Zalinescu, A.. - In: STOCHASTIC PROCESSES AND THEIR APPLICATIONS. - ISSN 0304-4149. - 2020, 130:3(2020), pp. 1669-1712. [10.1016/j.spa.2019.05.013]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0304414919303278-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 606.49 kB
Formato Adobe PDF
606.49 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/322944
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact