We present the first candidate for the realization of a disorder-induced Topological Anderson Insulator in a real material system. High-energy reactive mechanical alloying produces a polymorph of Cu2ZnSnS4 with high cation disorder. Density functional theory calculations show an inverted ordering of bands at the Brillouin zone center for this polymorph, which is in contrast to its ordered phase. Adiabatic continuity arguments establish that this disordered Cu2ZnSnS4 can be connected to the closely related Cu2ZnSnSe4, which was previously predicted to be a 3D topological insulator, while band structure calculations with a slab geometry reveal the presence of robust surface states. This evidence makes a strong case in favor of a novel topological phase. As such, the study opens up a window to understanding and potentially exploiting topological behavior in a rich class of easily-synthesized multinary, disordered compounds.

Topological Anderson Insulator in Cation-Disordered Cu2ZnSnS4 / Mukherjee, Binayak; Isotta, Eleonora; Fanciulli, Carlo; Ataollahi, Narges; Scardi, Paolo. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 2021, 11:10(2021), pp. 2595.1-2595.12. [10.3390/nano11102595]

Topological Anderson Insulator in Cation-Disordered Cu2ZnSnS4

Mukherjee, Binayak;Isotta, Eleonora;Ataollahi, Narges;Scardi, Paolo
2021-01-01

Abstract

We present the first candidate for the realization of a disorder-induced Topological Anderson Insulator in a real material system. High-energy reactive mechanical alloying produces a polymorph of Cu2ZnSnS4 with high cation disorder. Density functional theory calculations show an inverted ordering of bands at the Brillouin zone center for this polymorph, which is in contrast to its ordered phase. Adiabatic continuity arguments establish that this disordered Cu2ZnSnS4 can be connected to the closely related Cu2ZnSnSe4, which was previously predicted to be a 3D topological insulator, while band structure calculations with a slab geometry reveal the presence of robust surface states. This evidence makes a strong case in favor of a novel topological phase. As such, the study opens up a window to understanding and potentially exploiting topological behavior in a rich class of easily-synthesized multinary, disordered compounds.
2021
10
Mukherjee, Binayak; Isotta, Eleonora; Fanciulli, Carlo; Ataollahi, Narges; Scardi, Paolo
Topological Anderson Insulator in Cation-Disordered Cu2ZnSnS4 / Mukherjee, Binayak; Isotta, Eleonora; Fanciulli, Carlo; Ataollahi, Narges; Scardi, Paolo. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 2021, 11:10(2021), pp. 2595.1-2595.12. [10.3390/nano11102595]
File in questo prodotto:
File Dimensione Formato  
nanomaterials-11-02595-v2.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 5.21 MB
Formato Adobe PDF
5.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/322363
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact