In recent years, the proliferation of unmanned aerial vehicles (UAVs) has increased dramatically. UAVs can accomplish complex or dangerous tasks in a reliable and cost-effective way but are still limited by power consumption problems, which pose serious constraints on the flight duration and completion of energy-demanding tasks. The possibility of providing UAVs with advanced decision-making capabilities in an energy-effective way would be extremely beneficial. In this paper, we propose a practical solution to this problem that exploits deep learning on the edge. The developed system integrates an OpenMV microcontroller into a DJI Tello Micro Aerial Vehicle (MAV). The microcontroller hosts a set of machine learning-enabled inference tools that cooperate to control the navigation of the drone and complete a given mission objective. The goal of this approach is to leverage the new opportunistic features of TinyML through OpenMV including offline inference, low latency, energy efficiency, and data security. The approach is successfully validated on a practical application consisting of the onboard detection of people wearing protection masks in a crowded environment.

Energy-Efficient Inference on the Edge Exploiting TinyML Capabilities for UAVs / Raza, Wamiq; Osman, Anas; Ferrini, Francesco; De Natale, Francesco. - In: DRONES. - ISSN 2504-446X. - ELETTRONICO. - 5:4(2021), pp. 12701-12710. [10.3390/drones5040127]

Energy-Efficient Inference on the Edge Exploiting TinyML Capabilities for UAVs

De Natale, Francesco
2021-01-01

Abstract

In recent years, the proliferation of unmanned aerial vehicles (UAVs) has increased dramatically. UAVs can accomplish complex or dangerous tasks in a reliable and cost-effective way but are still limited by power consumption problems, which pose serious constraints on the flight duration and completion of energy-demanding tasks. The possibility of providing UAVs with advanced decision-making capabilities in an energy-effective way would be extremely beneficial. In this paper, we propose a practical solution to this problem that exploits deep learning on the edge. The developed system integrates an OpenMV microcontroller into a DJI Tello Micro Aerial Vehicle (MAV). The microcontroller hosts a set of machine learning-enabled inference tools that cooperate to control the navigation of the drone and complete a given mission objective. The goal of this approach is to leverage the new opportunistic features of TinyML through OpenMV including offline inference, low latency, energy efficiency, and data security. The approach is successfully validated on a practical application consisting of the onboard detection of people wearing protection masks in a crowded environment.
2021
4
Raza, Wamiq; Osman, Anas; Ferrini, Francesco; De Natale, Francesco
Energy-Efficient Inference on the Edge Exploiting TinyML Capabilities for UAVs / Raza, Wamiq; Osman, Anas; Ferrini, Francesco; De Natale, Francesco. - In: DRONES. - ISSN 2504-446X. - ELETTRONICO. - 5:4(2021), pp. 12701-12710. [10.3390/drones5040127]
File in questo prodotto:
File Dimensione Formato  
drones-05-00127.pdf

accesso aperto

Descrizione: Articolo definitivo
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/322289
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 11
social impact