This study introduces the evolutionary tail-equivalent linearization method (ETELM) for nonlinear stochastic dynamic analysis. The method builds on the recently developed tail-equivalent linearization method (TELM) and it is designed for the class of evolutionary processes. The original TELM employs a tail-equivalent linear system (TELS) by equating the tail probability of a linear system response for a specified threshold to the first-order approximation of the tail probability of the nonlinear system response. For stationary problems, the TELS is time-independent and only one linear system needs to be defined for the specified threshold. However, for a transient input, the TELS is time dependent and an evolutionary tail-equivalent linear system (ETELS) must be defined to study the entire transient response. Algorithms are developed to determine a discrete-time ETELS based on a sequence of linearization points, and a continuous-time approximation based on Priestley's evolutionary theory. The linearized evolutionary system is used to compute the response statistics of interest, including the first-passage probability, in first-order approximation. Numerical examples demonstrate the accuracy and limitations of the proposed method.
Nonlinear Stochastic Dynamic Analysis by Evolutionary Tail-Equivalent Linearization Method / Broccardo, Marco; Der Kiureghian, Armen. - In: STRUCTURAL SAFETY. - ISSN 0167-4730. - 2021, 90:(2021), pp. 102044.1-102044.13. [10.1016/j.strusafe.2020.102044]
Nonlinear Stochastic Dynamic Analysis by Evolutionary Tail-Equivalent Linearization Method
Broccardo, Marco;
2021-01-01
Abstract
This study introduces the evolutionary tail-equivalent linearization method (ETELM) for nonlinear stochastic dynamic analysis. The method builds on the recently developed tail-equivalent linearization method (TELM) and it is designed for the class of evolutionary processes. The original TELM employs a tail-equivalent linear system (TELS) by equating the tail probability of a linear system response for a specified threshold to the first-order approximation of the tail probability of the nonlinear system response. For stationary problems, the TELS is time-independent and only one linear system needs to be defined for the specified threshold. However, for a transient input, the TELS is time dependent and an evolutionary tail-equivalent linear system (ETELS) must be defined to study the entire transient response. Algorithms are developed to determine a discrete-time ETELS based on a sequence of linearization points, and a continuous-time approximation based on Priestley's evolutionary theory. The linearized evolutionary system is used to compute the response statistics of interest, including the first-passage probability, in first-order approximation. Numerical examples demonstrate the accuracy and limitations of the proposed method.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0167473020301223-main (1).pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.8 MB
Formato
Adobe PDF
|
2.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione