The present project investigated the thermal stability of cold-setting refractory composites under high-temperature cycles. The proposed route dealt with the feasibility of using fillers with different particle sizes and studying their influence on the thermo-mechanical properties of refractory geopolymer composites. The volumetric shrinkage was studied with respect to particle sizes of fillers (80, 200 and 500 µm), treatment temperature (1050–1250 °C) and amount of fillers (70–85 wt.%). The results, combined with thermal analysis, indicated the efficiency of refractory-based kyanite aggregates for enhancing thermo-mechanical properties. At low temperatures, larger amounts of kyanite aggregates promoted mechanical strength development. Flexural strengths of 45, 42 and 40 MPa were obtained for geopolymer samples, respectively, at 1200 °C, made with filler particles sieved at 80, 200 and 500 µm. In addition, a sintering temperature equal to 1200 °C appeared beneficial for the promotion of densification as well as bonding between kyanite aggregates and the matrix, contributing to the reinforcement of the refractory geopolymer composites without any sign of vitrification. From the obtained properties of thermal stability, good densification and high strength, kyanite aggregates are efficient and promising candidates for the production of environmentally friendly, castable refractory composites.

Controlling the thermal stability of kyanite-based refractory geopolymers / Nemaleu Deutou, J. G.; Kaze, R. C.; Kamseu, E.; Sglavo, V. M.. - In: MATERIALS. - ISSN 1996-1944. - 14:11(2021), p. 2903. [10.3390/ma14112903]

Controlling the thermal stability of kyanite-based refractory geopolymers

Sglavo V. M.
2021-01-01

Abstract

The present project investigated the thermal stability of cold-setting refractory composites under high-temperature cycles. The proposed route dealt with the feasibility of using fillers with different particle sizes and studying their influence on the thermo-mechanical properties of refractory geopolymer composites. The volumetric shrinkage was studied with respect to particle sizes of fillers (80, 200 and 500 µm), treatment temperature (1050–1250 °C) and amount of fillers (70–85 wt.%). The results, combined with thermal analysis, indicated the efficiency of refractory-based kyanite aggregates for enhancing thermo-mechanical properties. At low temperatures, larger amounts of kyanite aggregates promoted mechanical strength development. Flexural strengths of 45, 42 and 40 MPa were obtained for geopolymer samples, respectively, at 1200 °C, made with filler particles sieved at 80, 200 and 500 µm. In addition, a sintering temperature equal to 1200 °C appeared beneficial for the promotion of densification as well as bonding between kyanite aggregates and the matrix, contributing to the reinforcement of the refractory geopolymer composites without any sign of vitrification. From the obtained properties of thermal stability, good densification and high strength, kyanite aggregates are efficient and promising candidates for the production of environmentally friendly, castable refractory composites.
2021
11
Nemaleu Deutou, J. G.; Kaze, R. C.; Kamseu, E.; Sglavo, V. M.
Controlling the thermal stability of kyanite-based refractory geopolymers / Nemaleu Deutou, J. G.; Kaze, R. C.; Kamseu, E.; Sglavo, V. M.. - In: MATERIALS. - ISSN 1996-1944. - 14:11(2021), p. 2903. [10.3390/ma14112903]
File in questo prodotto:
File Dimensione Formato  
materials-14-02903.pdf

accesso aperto

Descrizione: lavoro finale completo
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 4.34 MB
Formato Adobe PDF
4.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/320771
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact