We study a mean field approximation for the 2D Euler vorticity equation driven by a transport noise. We prove that the Euler equations can be approximated by interacting point vortices driven by a regularized Biot-Savart kernel and the same common noise. The approximation happens by sending the number of particles N to infinity and the regularization in the Biot-Savart kernel to 0, as a suitable function of N.

Regularized vortex approximation for 2D Euler equations with transport noise / Coghi, M.; Maurelli, M.. - In: STOCHASTICS AND DYNAMICS. - ISSN 0219-4937. - 20:6(2020), pp. 204000201-204000227. [10.1142/S021949372040002X]

Regularized vortex approximation for 2D Euler equations with transport noise

Coghi M.;
2020-01-01

Abstract

We study a mean field approximation for the 2D Euler vorticity equation driven by a transport noise. We prove that the Euler equations can be approximated by interacting point vortices driven by a regularized Biot-Savart kernel and the same common noise. The approximation happens by sending the number of particles N to infinity and the regularization in the Biot-Savart kernel to 0, as a suitable function of N.
2020
6
Coghi, M.; Maurelli, M.
Regularized vortex approximation for 2D Euler equations with transport noise / Coghi, M.; Maurelli, M.. - In: STOCHASTICS AND DYNAMICS. - ISSN 0219-4937. - 20:6(2020), pp. 204000201-204000227. [10.1142/S021949372040002X]
File in questo prodotto:
File Dimensione Formato  
6_Coghi, Maurelli, SD.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 357.8 kB
Formato Adobe PDF
357.8 kB Adobe PDF   Visualizza/Apri
1912.07233.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 279.1 kB
Formato Adobe PDF
279.1 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/320289
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact