Abstract words are typically more difficult to identify than concrete words in lexical-decision, word-naming, and recall tasks. This behavioral advantage, known as the concreteness effect, is often considered as evidence for embodied semantics, which emphasizes the role of sensorimotor experience in the comprehension of word meaning. In this view, online sensorimotor simulations triggered by concrete words, but not by abstract words, facilitate access to word meaning and speed up word identification. To test whether perceptual simulation is the driving force underlying the concreteness effect, we compared data from early-blind and sighted individuals performing an auditory lexical-decision task. Subjects were presented with property words referring to abstract (e.g., “logic”), concrete multimodal (e.g., “spherical”), and concrete unimodal visual concepts (e.g., “blue”). According to the embodied account, the processing advantage for concrete unimodal visual words should disappear in the early blind because they cannot rely on visual experience and simulation during semantics processing (i.e., purely visual words should be abstract for early-blind people). On the contrary, we found that both sighted and blind individuals are faster when processing multimodal and unimodal visual words compared with abstract words. This result suggests that the concreteness effect does not depend on perceptual simulations but might be driven by modality-independent properties of word meaning.
The concreteness advantage in lexical decision does not depend on perceptual simulations / Bottini, Roberto; Morucci, Piermatteo; D'Urso, Anna; Collignon, Olivier; Crepaldi, Davide. - In: JOURNAL OF EXPERIMENTAL PSYCHOLOGY. GENERAL. - ISSN 0096-3445. - 151:3(2022), pp. 731-738. [10.1037/xge0001090]
The concreteness advantage in lexical decision does not depend on perceptual simulations
Bottini, Roberto;Collignon, Olivier;
2022-01-01
Abstract
Abstract words are typically more difficult to identify than concrete words in lexical-decision, word-naming, and recall tasks. This behavioral advantage, known as the concreteness effect, is often considered as evidence for embodied semantics, which emphasizes the role of sensorimotor experience in the comprehension of word meaning. In this view, online sensorimotor simulations triggered by concrete words, but not by abstract words, facilitate access to word meaning and speed up word identification. To test whether perceptual simulation is the driving force underlying the concreteness effect, we compared data from early-blind and sighted individuals performing an auditory lexical-decision task. Subjects were presented with property words referring to abstract (e.g., “logic”), concrete multimodal (e.g., “spherical”), and concrete unimodal visual concepts (e.g., “blue”). According to the embodied account, the processing advantage for concrete unimodal visual words should disappear in the early blind because they cannot rely on visual experience and simulation during semantics processing (i.e., purely visual words should be abstract for early-blind people). On the contrary, we found that both sighted and blind individuals are faster when processing multimodal and unimodal visual words compared with abstract words. This result suggests that the concreteness effect does not depend on perceptual simulations but might be driven by modality-independent properties of word meaning.File | Dimensione | Formato | |
---|---|---|---|
Bottini_et_al_2021_JEPG.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
434.34 kB
Formato
Adobe PDF
|
434.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione