This study aimed to grow a fungal-bacterial mixed biofilm on medical-grade titanium and assess the ability of the biosurfactant R89 (R89BS) coating to inhibit biofilm formation. Coated titanium discs (TDs) were obtained by physical absorption of R89BS. Candida albicans-Staphylococcus aureus biofilm on TDs was grown in Yeast Nitrogen Base, supplemented with dextrose and fetal bovine serum, renewing growth medium every 24 h and incubating at 37 °C under agitation. The anti-biofilm activity was evaluated by quantifying total biomass, microbial metabolic activity and microbial viability at 24, 48, and 72 h on coated and uncoated TDs. Scanning electron microscopy was used to evaluate biofilm architecture. R89BS cytotoxicity on human primary osteoblasts was assayed on solutions at concentrations from 0 to 200 µg/mL and using eluates from coated TDs. Mixed biofilm was significantly inhibited by R89BS coating, with similar effects on biofilm biomass, cell metabolic activity and cell viability. A biofilm inhibition >90% was observed at 24 h. A lower but significant inhibition was still present at 48 h of incubation. Viability tests on primary osteoblasts showed no cytotoxicity of coated TDs. R89BS coating was effective in reducing C. albicans-S. aureus mixed biofilm on titanium surfaces and is a promising strategy to prevent dental implants microbial colonization.

Counter-acting Candida albicans-staphylococcus aureus mixed biofilm on titanium implants using microbial biosurfactants / Tambone, E.; Marchetti, A.; Ceresa, C.; Piccoli, F.; Anesi, A.; Nollo, G.; Caola, I.; Bosetti, M.; Fracchia, L.; Ghensi, P.; Tessarolo, F.. - In: POLYMERS. - ISSN 2073-4360. - 13:15(2021), pp. 242001-242018. [10.3390/polym13152420]

Counter-acting Candida albicans-staphylococcus aureus mixed biofilm on titanium implants using microbial biosurfactants

Tambone E.;Marchetti A.;Anesi A.;Nollo G.;Bosetti M.;Ghensi P.;Tessarolo F.
2021-01-01

Abstract

This study aimed to grow a fungal-bacterial mixed biofilm on medical-grade titanium and assess the ability of the biosurfactant R89 (R89BS) coating to inhibit biofilm formation. Coated titanium discs (TDs) were obtained by physical absorption of R89BS. Candida albicans-Staphylococcus aureus biofilm on TDs was grown in Yeast Nitrogen Base, supplemented with dextrose and fetal bovine serum, renewing growth medium every 24 h and incubating at 37 °C under agitation. The anti-biofilm activity was evaluated by quantifying total biomass, microbial metabolic activity and microbial viability at 24, 48, and 72 h on coated and uncoated TDs. Scanning electron microscopy was used to evaluate biofilm architecture. R89BS cytotoxicity on human primary osteoblasts was assayed on solutions at concentrations from 0 to 200 µg/mL and using eluates from coated TDs. Mixed biofilm was significantly inhibited by R89BS coating, with similar effects on biofilm biomass, cell metabolic activity and cell viability. A biofilm inhibition >90% was observed at 24 h. A lower but significant inhibition was still present at 48 h of incubation. Viability tests on primary osteoblasts showed no cytotoxicity of coated TDs. R89BS coating was effective in reducing C. albicans-S. aureus mixed biofilm on titanium surfaces and is a promising strategy to prevent dental implants microbial colonization.
2021
15
Tambone, E.; Marchetti, A.; Ceresa, C.; Piccoli, F.; Anesi, A.; Nollo, G.; Caola, I.; Bosetti, M.; Fracchia, L.; Ghensi, P.; Tessarolo, F.
Counter-acting Candida albicans-staphylococcus aureus mixed biofilm on titanium implants using microbial biosurfactants / Tambone, E.; Marchetti, A.; Ceresa, C.; Piccoli, F.; Anesi, A.; Nollo, G.; Caola, I.; Bosetti, M.; Fracchia, L.; Ghensi, P.; Tessarolo, F.. - In: POLYMERS. - ISSN 2073-4360. - 13:15(2021), pp. 242001-242018. [10.3390/polym13152420]
File in questo prodotto:
File Dimensione Formato  
polymers-13-02420-v2.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/319973
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact