Earthquakes have become one of the leading causes of death from natural hazards in the last fifty years. Continuous efforts have been made to understand the physical characteristics of earthquakes and the interaction between the physical hazards and the environments so that appropriate warnings may be generated before earthquakes strike. However, earthquake forecasting is not trivial at all. Reliable forecastings should include the analysis and the signals indicating the coming of a significant quake. Unfortunately, these signals are rarely evident before earthquakes occur, and therefore it is challenging to detect such precursors in seismic analysis. Among the available technologies for earthquake research, remote sensing has been commonly used due to its unique features such as fast imaging and wide image-acquisition range. Nevertheless, early studies on pre-earthquake and remote-sensing anomalies are mostly oriented towards anomaly identification and analysis of a single physical pa...

Towards advancing the earthquake forecasting by machine learning of satellite data / Xiong, P.; Tong, L.; Zhang, K.; Shen, X.; Battiston, R.; Ouzounov, D.; Iuppa, R.; Crookes, D.; Long, C.; Zhou, H.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - 771:(2021). [10.1016/j.scitotenv.2021.145256]

Towards advancing the earthquake forecasting by machine learning of satellite data

Battiston, R.;Iuppa, R.;
2021-01-01

Abstract

Earthquakes have become one of the leading causes of death from natural hazards in the last fifty years. Continuous efforts have been made to understand the physical characteristics of earthquakes and the interaction between the physical hazards and the environments so that appropriate warnings may be generated before earthquakes strike. However, earthquake forecasting is not trivial at all. Reliable forecastings should include the analysis and the signals indicating the coming of a significant quake. Unfortunately, these signals are rarely evident before earthquakes occur, and therefore it is challenging to detect such precursors in seismic analysis. Among the available technologies for earthquake research, remote sensing has been commonly used due to its unique features such as fast imaging and wide image-acquisition range. Nevertheless, early studies on pre-earthquake and remote-sensing anomalies are mostly oriented towards anomaly identification and analysis of a single physical pa...
2021
Xiong, P.; Tong, L.; Zhang, K.; Shen, X.; Battiston, R.; Ouzounov, D.; Iuppa, R.; Crookes, D.; Long, C.; Zhou, H.
Towards advancing the earthquake forecasting by machine learning of satellite data / Xiong, P.; Tong, L.; Zhang, K.; Shen, X.; Battiston, R.; Ouzounov, D.; Iuppa, R.; Crookes, D.; Long, C.; Zhou, H.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - 771:(2021). [10.1016/j.scitotenv.2021.145256]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/317234
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 50
  • OpenAlex ND
social impact