We present variational approximations of boundary value problems for curvature flow (curve shortening flow) and elastic flow (curve straightening flow) in two-dimensional Riemannian manifolds that are conformally flat. For the evolving open curves we propose natural boundary conditions that respect the appropriate gradient flow structure. Based on suitable weak formulations we introduce finite element approximations using piecewise linear elements. For some of the schemes a stability result can be shown. The derived schemes can be employed in very different contexts. For example, we apply the schemes to the Angenent metric in order to numerically compute rotationally symmetric self-shrinkers for the mean curvature flow. Furthermore, we utilise the schemes to compute geodesics that are relevant for optimal interface profiles in multi-component phase field models.

Numerical approximation of boundary value problems for curvature flow and elastic flow in Riemannian manifolds / Garcke, Harald; Nürnberg, Robert. - In: NUMERISCHE MATHEMATIK. - ISSN 0029-599X. - 149:2(2021), pp. 375-415. [10.1007/s00211-021-01231-6]

Numerical approximation of boundary value problems for curvature flow and elastic flow in Riemannian manifolds

Nürnberg, Robert
2021-01-01

Abstract

We present variational approximations of boundary value problems for curvature flow (curve shortening flow) and elastic flow (curve straightening flow) in two-dimensional Riemannian manifolds that are conformally flat. For the evolving open curves we propose natural boundary conditions that respect the appropriate gradient flow structure. Based on suitable weak formulations we introduce finite element approximations using piecewise linear elements. For some of the schemes a stability result can be shown. The derived schemes can be employed in very different contexts. For example, we apply the schemes to the Angenent metric in order to numerically compute rotationally symmetric self-shrinkers for the mean curvature flow. Furthermore, we utilise the schemes to compute geodesics that are relevant for optimal interface profiles in multi-component phase field models.
2021
2
Garcke, Harald; Nürnberg, Robert
Numerical approximation of boundary value problems for curvature flow and elastic flow in Riemannian manifolds / Garcke, Harald; Nürnberg, Robert. - In: NUMERISCHE MATHEMATIK. - ISSN 0029-599X. - 149:2(2021), pp. 375-415. [10.1007/s00211-021-01231-6]
File in questo prodotto:
File Dimensione Formato  
angenent.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/316833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact