In this article we extend to arbitrary p-energy minimizing maps between Riemannian manifolds a regularity result which is known to hold in the case p= 2. We first show that the set of singular points of such a map can be quantitatively stratified: we classify singular points based on the number of almost-symmetries of the map around them, as done in Cheeger and Naber (Commun Pure Appl Math 66(6): 965–990, 2013). Then, adapting the work of Naber and Valtorta (Ann Math (2) 185(1): 131–227, 2017), we apply a Reifenberg-type Theorem to each quantitative stratum; through this, we achieve an upper bound on the Minkowski content of the singular set, and we prove it is k-rectifiable for a k which only depends on p and the dimension of the domain.

Quantitative Regularity for p-Minimizing Maps Through a Reifenberg Theorem / Vedovato, M.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 31:8(2021), pp. 8271-8317. [10.1007/s12220-020-00586-w]

Quantitative Regularity for p-Minimizing Maps Through a Reifenberg Theorem

Vedovato M.
2021-01-01

Abstract

In this article we extend to arbitrary p-energy minimizing maps between Riemannian manifolds a regularity result which is known to hold in the case p= 2. We first show that the set of singular points of such a map can be quantitatively stratified: we classify singular points based on the number of almost-symmetries of the map around them, as done in Cheeger and Naber (Commun Pure Appl Math 66(6): 965–990, 2013). Then, adapting the work of Naber and Valtorta (Ann Math (2) 185(1): 131–227, 2017), we apply a Reifenberg-type Theorem to each quantitative stratum; through this, we achieve an upper bound on the Minkowski content of the singular set, and we prove it is k-rectifiable for a k which only depends on p and the dimension of the domain.
2021
8
Vedovato, M.
Quantitative Regularity for p-Minimizing Maps Through a Reifenberg Theorem / Vedovato, M.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 31:8(2021), pp. 8271-8317. [10.1007/s12220-020-00586-w]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/316461
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact