Starting from a symmetric state-feedback solution ensuring $alpha $ -exponential convergence in an ellipsoidal sublevel set, with asymmetric saturation and single-input linear plants, we propose a novel asymmetric scheduled extension preserving the original symmetric solution in that sublevel set and extending the guaranteed stability region to the union of all possible contractive ellipsoids centered at a shifted equilibrium. Our design being based on the solution of a parametric optimization problem, we prove Lipschitz properties of the ensuing feedback law and we compute its explicit state-feedback expression.

An Asymmetric Stabilizer Based on Scheduling Shifted Coordinates for Single-Input Linear Systems with Asymmetric Saturation / Braun, Philipp; Giordano, Giulia; Kellett, Christopher M.; Zaccarian, Luca. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - 6:(2022), pp. 746-751. [10.1109/LCSYS.2021.3086216]

An Asymmetric Stabilizer Based on Scheduling Shifted Coordinates for Single-Input Linear Systems with Asymmetric Saturation

Giordano, Giulia;Zaccarian, Luca
2022-01-01

Abstract

Starting from a symmetric state-feedback solution ensuring $alpha $ -exponential convergence in an ellipsoidal sublevel set, with asymmetric saturation and single-input linear plants, we propose a novel asymmetric scheduled extension preserving the original symmetric solution in that sublevel set and extending the guaranteed stability region to the union of all possible contractive ellipsoids centered at a shifted equilibrium. Our design being based on the solution of a parametric optimization problem, we prove Lipschitz properties of the ensuing feedback law and we compute its explicit state-feedback expression.
2022
Braun, Philipp; Giordano, Giulia; Kellett, Christopher M.; Zaccarian, Luca
An Asymmetric Stabilizer Based on Scheduling Shifted Coordinates for Single-Input Linear Systems with Asymmetric Saturation / Braun, Philipp; Giordano, Giulia; Kellett, Christopher M.; Zaccarian, Luca. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - 6:(2022), pp. 746-751. [10.1109/LCSYS.2021.3086216]
File in questo prodotto:
File Dimensione Formato  
2022_BGKZ_CSSL.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/315597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact