The spectral-density operator ρ(ω)=δ(ω-Ĥ) plays a central role in linear response theory as its expectation value, the dynamical response function, can be used to compute scattering cross sections. In this work, we describe a near optimal quantum algorithm providing an approximation to the spectral density with energy resolution Δ and error ϵ using Olog21/ϵlog21/Δ+log21/ϵ/Δ operations. This is achieved without using expensive approximations to the time-evolution operator, but instead exploiting qubitization to implement an approximate Gaussian integral transform of the spectral density. We also describe appropriate error metrics to assess the quality of the spectral function approximations more generally.
Spectral-density estimation with the Gaussian integral transform / Roggero, A.. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 102:2(2020), pp. 022409.1-022409.12. [10.1103/PhysRevA.102.022409]
Spectral-density estimation with the Gaussian integral transform
Roggero A.
2020-01-01
Abstract
The spectral-density operator ρ(ω)=δ(ω-Ĥ) plays a central role in linear response theory as its expectation value, the dynamical response function, can be used to compute scattering cross sections. In this work, we describe a near optimal quantum algorithm providing an approximation to the spectral density with energy resolution Δ and error ϵ using Olog21/ϵlog21/Δ+log21/ϵ/Δ operations. This is achieved without using expensive approximations to the time-evolution operator, but instead exploiting qubitization to implement an approximate Gaussian integral transform of the spectral density. We also describe appropriate error metrics to assess the quality of the spectral function approximations more generally.File | Dimensione | Formato | |
---|---|---|---|
2004.04889.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
303.85 kB
Formato
Adobe PDF
|
303.85 kB | Adobe PDF | Visualizza/Apri |
git.pdf
accesso aperto
Descrizione: Articolo principale - versione pubblicata
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
297.84 kB
Formato
Adobe PDF
|
297.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione